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ON A SINGULAR VALUE INEQUALITY OF KY FAN AND HOFFMAN

PETER G. DODDS AND THERESA K.-Y. DODDS

(Communicated by Palle E. T. Jorgensen)

Abstract. It is shown that the identity operator is a best unitary approximant

to any positive measurable operator affiliated with a semifinite von Neumann

algebra equipped with a distinguished faithful normal semifinite trace.

0. Introduction

It is a well-known result of Fan and Hoffman [FH] that the n x n identity

matrix is a best unitary approximant to any Hermitian positive semidefinite

n x n matrix for every unitarily invariant norm. Extensions of this result to

Schatten p-classes have been given by [AEG, GK, vR]. In the present paper, we

show (Theorem 3.1) that if x is a positive operator on a Hilbert space, measur-

able with respect to some semifinite von Neumann algebra Jf equipped with a

distinguished semifinite trace, then the generalized singular value function (or

decreasing rearrangement) of x - 1 is submajorized (in the sense of Hardy,

Littlewood, and Polya) by that of x - u for each unitary u £ J?. In fact,

in the case of n x n matrices, it is precisely this submajorization result that
is proved in [FH], to which the stated metric inequalities are equivalent. The

method of [FH] is based on a submajorization inequality for the eigenvalues of

selfadjoint matrices due to Lidskii [Li] and Wielandt [Wi], subsequently gener-

alized to compact operators by Markus [Ma]. Similarly, the approach of [vR]

is based on a very special extension of the Markus inequality to the setting of

bounded operators on a Hilbert space, using the generalized notion of singular

value for bounded selfadjoint operators that may be found in [GK]. Accord-

ingly, a principal tool on which the present paper is based is a very general

form of the Markus inequality for measurable operators that may be found in

[DDP2].
In § 1, we gather the relevant terminology and essential properties of general-

ized singular values of measurable operators that form the basis of our approach,

with the principal submajorization result being given in §3. Since majorization

inequalities imply corresponding metric inequalities for fully symmetric opera-

tor spaces and since each of the noncommutative V-spaces associated with a
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semifinite von Neumann algebra is fully symmetric, we recover as special cases

of our main result the corresponding metric inequalities given in [vR, AEG,

GK]. In the final section, we show that if a strictly positive operator admits a

best unitary approximant in a noncommutative LP -space, with 1 < p < oo,

then this best approximant is necessarily unique. This extends known results

for the Schatten p-classes due to [AEG] to the general setting.

1. Preliminaries

We denote by Jf a semifinite von Neumann algebra in the Hilbert space H

with given normal faithful semifinite trace x. If x is a densely defined linear

selfadjoint operator in H and x = J, ^ ,sdef is its spectral decomposition,

then, for any Borel subset B C R, we denote by Xb(x) the corresponding

spectral projection /(oo , Xb(s) de* . A closed densely defined linear operator

x in H affiliated with J( is said to be x-measurable if and only if there exists

a number s >0 such that

r(X(S,oo)(\x\))<oo.

The set of all r-measurable operators will be denoted by J(. The set JK is

a *-algebra with sum and product being the respective closures of the algebraic

sum and product [Ne]. For x £ Jf, the generalized singular value function (or

decreasing rearrangement) p.(x) of x is defined by

pt(x) = inf{s > 0 : t(*(,p0o)(|x|)) < t},        t > 0.

It follows that p(x) is a decreasing, right continuous function on the halfline

R+ = [0, oo). Moreover,

Kxyz) < \\x\\00p(y)\\z\\00,        x, z £ J!, y £ Jf,

where H-Hoo is the usual operator norm and

P(f(\x\)) = f(p(x))

for any continuous increasing function / on [0, oo) with /(0) = 0. For

further properties of singular value functions, see [FK].

If J[ is the space L(H) of all bounded linear operators on H and t is

the standard trace, then J? = L(H) and x £ L(H) is compact if and only if

Pt(x) —► 0 as t —> oo, in which case for each « = 0,1,2,...,

pn(x) = p,(x),        t£[n,n+l),

and {Pn(x)}<^=0 is the usual singular value sequence of x in decreasing order

counted according to multiplicity [GK].

We identify the space L°°(R+) of all bounded complex-valued Lebesgue mea-

surable functions on the halfline R+ as a commutative von Neumann algebra

acting by multiplication on the Hilbert space L2(R+) with trace given by in-

tegration with respect to Lebesgue measure m . In this case, the T-measurable

operators coincide with those complex measurable functions / on M+ that are

bounded except on a set of finite measure. In this example, the generalized

singular value function, which we continue to denote by p(f), coincides with

the familiar right continuous decreasing rearrangement of the function /. See,

for example, [KPS].
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If x, y £ Jf, we say that x is submajorized by y, written x -< y , if and
only if

pa pa

\   p,(x) dt<      pt(y) dt       for all a > 0.
Jo Jo

The following result is proved in [DDP2].

If x, y £Jt then p(x) -p(y) ■< p(x -y).

We remark that the submajorization is, of course, with respect to the von Neu-

mann algebra L°°(R+). This submajorization inequality generalizes a similar

inequality for compact operators proved by Markus [Ma], and accordingly we

refer to it as the generalized Markus inequality. We note, as a simple conse-

quence, that if x, y £ Jt then

p(x + y) -< p(x) + p(y).

We define

J(o = {x £ Jf : Pt(x) —* 0 as t —> 00}.

It is clear that x £ J(§ if and only if t(X(S,oo)(\x\)) < 00 for all s > 0.

2. A SINGULAR VALUE EQUALITY

Lemma 2.1. If t(1) < 00 and 0 < x £ J? then

p(x- 1) = p(p(x) - p(\)).

Proof. It is clear that

r(X(s,co)(\X- l\)) = T(X[0,1-S){X)) + T(X(\+s,oo){x)) , s>0,

and

*{X{s,oo){x)) = m{r>0: pr(x) > s},        s > 0.

Since t( 1) < 00 , it follows routinely from the normality of t that

*(X[s,oo)(x)) = m{r>0:pr(x) > s},        s>0,

and so

t{X[o,s){x)) = m{r : 0 < r < t(1) and pr(x) < s},        s > 0.

Hence, for s > 0, we have

t(X(s,oo)(\x- l|)) = w{r:0<r<T(l) and pr(x) < 1 -s}

+ m{r > 0: pr(x) > 1 + s}

= m{r>0: \pr(x) - pr(\)\ >s};

consequently,

pt(x - 1) = p,(p(x) - p( 1))   for all   t > 0.   □

Lemma 2.2. If e £J£ is a projection, x(e) < 00, and 0 < x £ J(, then

p(exe -e) = p(p(exe) - p(e)).
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Proof. For y £ Jt, denote by ye the restriction of ey to e(H). Let Jfe =

{ye:y £ Jt} . Then Me is a von Neumann algebra in the Hilbert space e(H).

Define xe on J!e by

Te(ye) = i(eye),        y£jf.

xe is a finite faithful normal trace on Jfe. From Lemma 1, with Jf, x replaced

by JKe,xe , respectively, the result now follows.   □

While Lemma 2.2 suffices in what follows, we note the following strengthen-

ing of Lemma 2.1.

Proposition 2.3. If 0 < x £ Jf§ then

p(x- I) = p(p(x) - p(l)).

Proof. By Lemma 2.1, we may assume that t(1) = oo , and since 0 < x £ J?q,

it follows that

T{X[0,s){x)) = oo   and   m{r > 0 : pr(x) < s} = oo   for all 5 >0.

If 0 < 5 < 1, then

t(*(j,oo)(|*- l|)) = m{r>0:|/ir(x)-/*r(l)| >s} = oo.

If s > 1, then

*{X{s,oo){\x - 1|)) = T(X'l+s,oo){x))

and
m{r > 0 : \pr(x) - pr(l)\ > s} = m{r > 0 : pr(x) > I + s}.

Consequently,

*(X{s,oo){\x- 1|)) = m{r >0: \pr(x) - pr(l)\ > s}   for all 5 >0,

and the proposition is proved.    D

It is worth noting that the equality asserted by Proposition 2.3 may fail in

general. In fact, let J? be L°°(R+), and let x be given by setting

;c(;) = l-e~',        (eK+.

It is clear that p(p(x) - p(\)) = 0; on the other hand,

pt(x-l) = e-',        t£R+.

3. A SINGULAR VALUE INEQUALITY

The main result of this paper now follows.

Theorem 3.1. If 0 < x £ Jf and ae/ is unitary then

x - 1 -< x - u.

Proof. If t(1) < oo, then Lemma 2.1 implies that

p(x- \) = p(p(x) - p(Xj),

and since p(u) = p(l), the general Markus inequality implies that

p(x - 1) -< p(x - u).
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Assume then that t(1) = oo.   It suffices to show that, for any numbers

a > 0, e > 0, there exists x = x(a ,z)£Jf and a projection e — e(a ,t)£Jf
such that

(i) /0apt(x -l)dt = f° MMxe) - p(e)) dt,
(ii) \\xe - xelU < § .

In fact, if this is done, then (ii) implies that

/   pt(xe - xe)dt <a\\xe - xe\\oo < e;
Jo

and so, from (i) and the general Markus inequality, it follows that

pa pa

/   pt(x-\)dt= I  pt(p(xe)-p(e))dt
Jo Jo

pa pa

< /   pt(p(xe) - p(xe))dt+      pt(p(xe) - p(e))dt
Jo Jo

pa pa

< /   pt(xe-xe)dt+ /   pt(p(xe) - p(ue)) dt
Jo Jo

pa pa

<e+      pt((x - u)e)dt <e+      pt(x-u)dt.
Jo Jo

We write
a = inf{s > 0 : x(x{s,oo)(x)) < 00},

B = sup{5 > 0 : t(^[0,,)(x)) < 00'},

y = inf{s>0:x(x{s,oo)(\x- l|))<oo}.

Note that {I < a since t(1) = 00, and it is not difficult to see that

( la- II =a- 1    if 2+4 > 1
y = max(|a-l|,|l-jj|) = 4 '        ' 2~

1 \1-B\ = 1-B   if 2+4 < 1.

We set e' = X(y,oo)(\x - l\) and consider the following two cases.

Case 1. 0 < a < x(e'). If x(e') < 00, then we may take x = x and e — e'.
Via the argument of [DDP2, Lemma 2.4(i)], observe that

XlO,a)f*(X - 1) = X[0,a)K{X ~ 1)^') .

By Lemma 2.2, we now have

pa pa pa

I  pt(x-\)dt= I  pt((x-\)e')dt=      pt(p(exe)-p(e))dt.
Jo Jo Jo

If x(e') — oo, then there exists s > y such that

A <*(*(*,oo)(|*- 1|))<00.

Then we can take

x = x   and   e = X(S,oo){\x - l\),

and it again follows that (i) is satisfied.

Case 2.    x(e') < a.   If y = 0 and ex - X{i}(x), then x(ex) — oo and

xex = ex. Let e2 £ Jf be a projection such that

e2 < ex   and   a - x(e') < x(e2) < oo.
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Note that e2 J. e' and xe2 = xexe2 - e2. If we take

e = e' + e2   and   x = xe,

then
x = exe = exe   and   x(e) < oo.

From Lemma 2.2, it follows that
pa pa

/   p.,(x-l)dt=      p,((x-\)e')dt
Jo Jo

= I   pt((xe' + xe2)-(e' + e2))dt
Jo

= /  p,(p(exe)-p(e))dt.
Jo

If y > 0, we may assume e satisfies 0 < e < 2ay. Now define the projection

ex via
_   f X(a-e/a,a](x)     if 7= |o - 1|,

1 ~ I X[fs,p+eia){x)   ify = \\-B\.

It follows that x(ex) = oo and ex ± e'. Let e2£j( be a projection such that

e°2 < ex   and   a - x(e') < x(e2) < oo.

Define e = e' + e2 and

(xe' + ae2    ify = |a-l|,

X=\xe' + pe2   ify = \\-p\.

It follows that
f (a - x)e2    if y = \a -II,

\(/J-xy2    ify = |l-/?|,

and consequently (ii) is satisfied. Moreover,

j \x - \\e'+ \a - l\e2    ify = |a-l|,

|X_e|~ I \x-l\e' + \l-B\e2   ify=\l-B\,

which implies that

\x - e\ = \x - l\e' + ye2,

and hence
p(x-e) =n(\x- l\e' + ye2)

= p(\x - \\e') + yX[i(e'),r(e')+T{e2))

- Mx - l)X[0,x(e))-

As ex = xe = x and a < x(e) < oo, it follows again via Lemma 2.2 that (i) is

satisfied, and consequently the proof of the theorem is complete.   □

We remark that Theorem 3.1 is due, in the case of n x n matrices, to Fan and

Hoffman [FH] and to van Riemsdijk [vR] for the case that Jf = L(H) equipped
with standard trace and x is bounded. The present approach is based on that

of van Riemsdijk.
Let L°(R+) be the linear space of all (equivalence classes of) complex-valued

Lebesgue measurable functions on the halfline R+. A Banach space E(E+) with

norm ||.||£ ,  which is a linear subspace of L°(R+), is called a fully symmetric
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Banach function space on R+ if and only if / G L°(R+), g £ E(R+) and

Mf) ■< H(8) imP!y that / G E(R+) and ||/||£ < \\g\\E . It is shown in [KPS,
Theorem II 4.3] that the fully symmetric Banach function spaces on R+ are pre-
cisely the exact interpolation spaces for the Banach couple (Lx (K+), L°°(R+)).

If E(R+) is a fully symmetric Banach function space, we define

E(Jf) = {x £Jf : p(x) £ E}

and set

IMU#> = IIM*)L.      x£E(Jf).
It can be shown (see [DDP1, DDP2]) that (E(Jf), ||.||£t<r)) is a Banach space.

Of course, each of the familiar spaces Z/(R+), 1 < p < oo, is fully symmetric.

In this case, the corresponding noncommutative spaces LP(Jf), 1 < p < oo,

are precisely the spaces considered by Nelson [Ne] and reduce to the familiar

Schatten p-classes in the special case that Jf is L(H) equipped with standard

trace.

The following result, which extends the metric inequalities given in [FH, GK,

vR, AEG], is now an immediate consequence of Theorem 3.1 and the preceding

definitions.

Corollary 3.2. Let E(R+) be a fully symmetric Banach function space. If 0 <

x £ J(, u is unitary, and x - u £ E(Jf), then x-le E(Jf) and

\\x-\\\E{Jl)<\\x-u\\E(Jl).

We note finally that equality in Theorem 3.1, and hence also in Corollary

3.2, may hold for some unitary u / 1 . In fact, if Jf is the von Neumann

algebra L°°[0, 1], acting by multiplication on L2[0, 1], set x = X\o,'] an(*

u = X[0, i/2] _ #[1/2, i] ■ Then it is easily verified that

p(x - 1) = p(x - u).

4. Uniqueness of best approximation

The corollary of §3 shows that if 0 < x £ J?, then 1 is a best unitary

approximant to x in any fully symmetric norm, and as noted in the final ex-

ample, unless further restrictions are imposed, then x need not have a unique

best approximant forjmy fully symmetric norm. Following the terminology of

[AEG], if 0 < x £ Jf, then x will be called strictly positive if kerx = {0}.
We will now show that, if x is strictly positive and x - 1 G LP(^) for some

p, 1 < p < oo, then 1 is necessarily the unique best unitary approximant to

x in Lp(Jf). This extends a similar result obtained in [AEG] for the special

case of the Schatten p-classes, and our method here is a suitable adaptation of
the approach of [AEG].

It is well known (see, for example [FK, Theorems 5.2, 5.3]) that the noncom-

mutative spaces LP(Jf), 1 < p < oo , satisfy the Clarkson-McCarthy inequal-

ities, and hence are uniformly convex. Consequently, from the known duality

theory for the U>(J?)-spaces [Ne, DDP3], it follows that IP(JK), 1 < p < oo,
is uniformly smooth and has uniformly Frechet-differentiable norm. (See [Be,

3 II 2 Propositions 1, 2].) If 0 ^ x G LP(Jf), 1 < p < oo,  and we set

Gx(h) = lim11* + th^p ~ Mp ,        hsL"(Jt),
'-►0 t
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then Gx is the unique real linear functional defined on LP (Jf) satisfying

||(7*11 = 1     and   Gx(x) = \\x\\p.

These remarks constitute the proof of the first part of the following lemma.

Lemma 4.1. If 1 < p < oo, then LP(J?) has Frechet-differentiable norm, and

if0^x£LP(J^), then

Gx(h) = Rtx[ (y^t)      w*h) ,       heL"(Jt),
\\II*IIp/ J

where x = w\x\ is the polar decomposition of x.

Proof. It remains only to establish the formula for the derivative. If we set

Fx(h) = Rexl(]^l-)      w*h) ,        h£Lp(Jt),
\VIIxIIp/ J

then it is clear that Fx is a real linear functional on LP(Jf) for which Fx(x) =

\\x\\p . It suffices to show that ||F*|| = 1 . This follows from the usual Minkowski

inequality by noting that (|x|/||x||p)p_1 G Lq(^), with \/p + 1/0 = 1, and

that
i^wi < iTmxi/uxy-'™*/oi

<ll(M/IWIPr %!!«>*%
< || A Up       fox a\\h£ LP (J?).   D

We may now state the principal result of this section, which extends [AEG,

Theorem 3.2, 3.5].

Theorem 4.2. If x £Jf is strictly positive and there exists a unitary operator u

such that x - u £ Lp(^),  1 < p < oo, then it follows that x — 1 g LP(Jif) and

||x - 1 ||p < ||x — u\\p      for all unitary u ^ 1.

Proof. Corollary 3.2 and the assumption of the theorem imply that x - 1 g

LP(Jt) and

(1) ||x - l||p < ||x - u\\p       for all unitary u.

It remains to show that if v is unitary and

(2) ||x - i> ||p < ||x - m||p       for all unitary u,

then v = 1. To do this, we first show that such an operator v must be selfad-

joint and commute with x . We may assume that x - v ^ 0. \f f £ J! is a

projection with x(f) < oo, we define, following [AEG],

uf(8) = ei0f+(l-f),        d£R.

It is clear that U/(8) is unitary. For each /, the composition of maps

6 -* x - vuf(d) -» ||x - vuf(6)\\p ,        6 £ R,

has a local minimum at 6 = 0. It follows from Lemma 4.1 and the chain rule

that
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where x - v = w \x - v\ is the polar decomposition of x - v . Consequently,

t((|x - v\p~xw*v - v*w\x - v\p~x)f) = 0

for all projections f £ Jf with x(f) < oo.   Since linear combinations of

projections of finite trace are dense in LP(J£), it follows that

|x - v\p~xw*v = v*w\x - v\p~x,

and so v*w\x - v\p~x is selfadjoint. The same argument as in Lemma 3.3 of

[AEG] now shows that v is selfadjoint and commutes with x.

From (1) and (2), it follows that

(3) ||x- l||p = ||x-u||p.

Setting e = (1 - v)/2, note that e is a selfadjoint projection commuting with

x and that xe > 0. From (3),

/      pP(x-l)dt= [      pp (j(x-l)2 + 4xe) dt,
J[0,oo) J[0,oo) \ J

and since |x - 11 < ^(x - l)2 + 4xe , it follows that

p(x-\) = p^(x-l)2 + 4xey

and so

/i((x-1)2) = /i((x-1)2 + 4x^).

Now, for all s > 0,

r(X(s,oo)((x - I)2)) = r(X{s,oo)((x - l)2)e) + t(^;0o)((x - 1)2)(1 - e))

= r(X(s,oo){(x - \)2e)) + x(x(s,oc)((x - 1)2(1 - e))),

*(X{s,oo)((x- x-)2 + 4xe)) = x(x{s,oo)((x- l)2 + 4xe)e)

+ x(X{s,oo)((x - I)2 + 4xe)(l - e))

= <X(s,oo)((x + l)2e)) + x(x{s,oo)((x - 1)2(1 - e))),

since x - 1 G Lp(^) implies that x(X(S,oo)((x - l)2) < oo for all 5 > 0; hence

p((x - \)2e) = p((x + l)2e),

and so

pp(\x -\\e) = pp/2((x - l)2e) = pp((x + l)e).

Thus
t(|x- l\pe) = x((x + l)pe)<oo,

and since

|x- l\pe< (x+ \)pe,

it follows from faithfulness of x that

|x- l\pe = (x+l)pe,

and so

|x - l\e = (x+ \)e.

It now follows that
(x - l)2e = (x + l)2e,

and this implies that
xe = 0.

As kerx = {0} , this implies that e = 0.   D
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