NONUNIQUENESS FOR THE RADON TRANSFORM

D. H. ARMITAGE AND M. GOLDSTEIN

(Communicated by J. Marshall Ash)

ABSTRACT. There exists a nonconstant harmonic function h on \mathbb{R}^N , where $N \geq 2$, such that $\int_P |h| < +\infty$ and $\int_P h = 0$ for every (N-1)-dimensional hyperplane P.

Let f be a real- or complex-valued function on \mathbb{R}^N $(N \geq 2)$, and suppose that f is integrable on each (N-1)-dimensional hyperplane P in \mathbb{R}^N . The Radon transform \widehat{f} of f is defined on the set \mathbb{P}^N of all such hyperplanes by $\widehat{f}(P) = \int_P f \, d\lambda$, where λ denotes (N-1)-dimensional Lebesgue measure on P. We refer to Helgason [4] for the general theory of the Radon transform and its applications.

There are several proofs that if f is continuous and integrable on \mathbb{R}^N and $\widehat{f}\equiv 0$ on \mathbb{P}^N , then $f\equiv 0$ on \mathbb{R}^N (see Zalcman [5] for references); the simplest proof proceeds by showing that, under the stated hypotheses, the Fourier transform of f vanishes identically. With N=2, at least, the hypothesis that f is integrable on \mathbb{R}^N cannot be removed. Indeed, identifying \mathbb{R}^2 with \mathbb{C} , Zalcman [5, §5] showed that there exists a nonconstant entire function ϕ such that $\widehat{\phi}\equiv 0$ on \mathbb{P}^2 . The real part h of ϕ provides an example of a nonconstant harmonic function on \mathbb{R}^2 such that $\widehat{h}\equiv 0$ on \mathbb{P}^2 . Zalcman's proof depends on an approximation theorem of Arakelian [1, p. 1189] for holomorphic functions and has no obvious generalization to \mathbb{R}^N ($N \geq 3$). Here we use a recent theorem [3, Theorem 1.1] on harmonic approximation to prove the following result.

Theorem. There exists a nonconstant harmonic function h on \mathbb{R}^N $(N \ge 2)$ such that $\hat{h} \equiv 0$ on \mathbb{P}^N .

To the best of our knowledge, it has not hitherto been decided whether there exists even a nonconstant continuous function f on \mathbb{R}^N $(N \ge 3)$ for which $\widehat{f} \equiv 0$ on \mathbb{P}^N .

We denote a typical point of \mathbb{R}^N by $x = (x_1, \dots, x_N)$ and write

$$\langle x, y \rangle = x_1 y_1 + \dots + x_N y_N, \quad ||x|| = \sqrt{\langle x, x \rangle} \qquad (x, y \in \mathbb{R}^N).$$

Received by the editors December 17, 1990 and, in revised form, May 22, 1991. 1991 Mathematics Subject Classification. Primary 44A12; Secondary 31B05. Key words and phrases. Radon transform, harmonic function.

Let S denote the sphere $\{y \in \mathbb{R}^N : ||y|| = 1\}$. If $y \in S$ and $t \in \mathbb{R}$, we write

$$P(y, t) = \{x \in \mathbb{R}^N : \langle x, y \rangle = t\};$$

if $-\infty \le a < b \le +\infty$, we put

$$Q(y, a, b) = \bigcup_{a < t < b} P(y, t).$$

Thus P(y, t) is an (N-1)-dimensional hyperplane and Q(y, a, b) is isometric to $\mathbb{R}^{N-1} \times (a, b)$. The point at infinity of \mathbb{R}^N is denoted by \mathscr{A} , and we understand $\mathbb{R}^N \cup \{\mathscr{A}\}$ to be equipped with the Aleksandroff one-point compactification topology.

To prove the theorem, we need a nonempty subset E of \mathbb{R}^N with the following properties:

- (i) E is open in \mathbb{R}^N ;
- (ii) $E \cup \{\mathscr{A}\}$ is connected and locally connected in the topology of $\mathbb{R}^N \cup \{\mathscr{A}\}$;
- (iii) if $y \in S$ and $0 < a < +\infty$, then $E \cap Q(y, -a, a)$ is bounded;
- (iv) if $y \in S$ then there exists a positive number T, depending on y, such that at least one of the sets $E \cap Q(y, -\infty, -T)$ and $E \cap Q(y, T, +\infty)$ is empty.

An example of such a set E is as follows. Let $I = [0, +\infty)$, define $\psi: I \to \mathbb{R}^N$ by $\psi(\xi) = (\xi, \xi^2, \dots, \xi^N)$, and put

(1)
$$E = \left\{ x \in \mathbb{R}^N : \inf_{\xi \in I} \|x - \psi(\xi)\| < 1 \right\}.$$

We owe this example to a remark of Dr. T. B. M. McMaster; it replaces a more complicated example of ours. It is clear that the set E defined by (1) has properties (i) and (ii); we verify at the end of this note that it also has properties (iii) and (iv).

Now fix a point z of a set E satisfying (i)-(iv) and define closed subsets of \mathbb{R}^N by

$$F_1 = \mathbb{R}^N \setminus E$$
, $F_2 = \{z\}$, $F = F_1 \cup F_2$.

Clearly F is unbounded. Let ω_1 and ω_2 be disjoint open subsets of \mathbb{R}^N containing F_1 and F_2 , respectively, and define a function u to be equal to 0 on ω_1 and equal to 1 on ω_2 . Then u is harmonic on the open neighbourhood $\omega_1 \cup \omega_2$ of F. Also, properties (i) and (ii) hold with $\mathbb{R}^N \setminus F = E \setminus \{z\}$ in place of E. It follows from [3, Theorem 1.1] that there exists a harmonic function h on \mathbb{R}^N such that

(2)
$$|h(x) - u(x)| < (1 + ||x||)^{-N-1} \qquad (x \in F).$$

In particular, |h(z) - 1| < 1 and $\lim_{x \to \mathscr{A}, x \in F} h(x) = 0$, so that h is nonconstant.

Let y be a point of S. It suffices to show that h is integrable on P(y, t) and $\widehat{h}(P(y, t)) = 0$ for all real t. Suppose that $0 < a < +\infty$. By property (iii), we have for some positive number r

$$Q(y, -a, a) \setminus F \subset \{x \in \mathbb{R}^N : ||x|| < r\} = B_N(r),$$
 say.

From this remark and (2) we obtain that when |t| < a

$$\int_{P(y,t)} |h| \, d\lambda \le \sup_{B_N(r)} |h| \int_{P(y,t) \setminus F} d\lambda + \int_{P(y,t) \cap F} (1 + ||x||)^{-N-1} \, d\lambda(x)$$

$$\le V(r) \sup_{B_N(r)} |h| + \int_{P(y,0)} (1 + ||x||)^{-N-1} \, d\lambda(x),$$

where V(r) is the (N-1)-dimensional volume of $B_{N-1}(r)$. Thus the function $t \to \int_{P(y,t)} |h| \, d\lambda$ is locally bounded on \mathbb{R} . Now, using a rotation of axes, we find from known results (see, e.g., [2, Theorem 2]) that if s is subharmonic on \mathbb{R}^N and the function $t \to \int_{P(y,t)} |s| \, d\lambda$ is locally bounded on \mathbb{R} , then the hyperplane mean $\hat{s}(P(y,t))$ is a convex function of t on \mathbb{R} . Applying this result with s=h and with s=-h, we obtain that $\hat{h}(P(y,t))$ is a linear function (i.e., a polynomial of degree at most 1) of t. By property (iv), there exists a positive number T such that $P(y,t) \subset F$ either for all t > T or for all t < -T. Also, when $P(y,t) \subset F$ we obtain from (2) that

$$|\widehat{h}(P(y,t))| < \int_{P(y,t)} (1+||x||)^{-N-1} d\lambda(x)$$

$$= \int_{P(y,0)} (1+\sqrt{(||x||^2+t^2)})^{-N-1} d\lambda(x)$$

$$< (1+|t|)^{-1} \int_{P(y,0)} (1+||x||)^{-N} d\lambda(x),$$

so that $\widehat{h}(P(y, t)) \to 0$ either as $t \to +\infty$ or as $t \to -\infty$. Since $\widehat{h}(P(y, t))$ is a linear function of t, it now follows that $\widehat{h}(P(y, t)) = 0$ for all real t.

It remains to verify that the set E given by (1) has properties (iii) and (iv). Fix a point y of S and define $\eta: I \to \mathbb{R}$ by

$$\eta(\xi) = \sum_{j=1}^{N} y_j \xi^j.$$

Note that $|\eta(\xi)| \to +\infty$ as $\xi \to +\infty$ and that η is either bounded above or bounded below on I. For each point x of E, there exist a number ξ_x in I and a point x' of $B_N(1)$ such that $x = \psi(\xi_x) + x'$. Clearly $\xi_x \to +\infty$ as $x \to \mathscr{A}$ $(x \in E)$. We have

$$\langle x, y \rangle = \langle \psi(\xi_x), y \rangle + \langle x', y \rangle$$

= $\eta(\xi_x) + O(1)$ $(x \to \mathcal{A}, x \in E)$.

It follows that if $0 < a < +\infty$ then $\{x \in E : |\langle x, y \rangle| < a\}$ is bounded, so that (iii) holds. It also follows that there exists a positive number T such that either $\langle x, y \rangle < T$ for all x in E or $\langle x, y \rangle > -T$ for all x in E, so that (iv) holds.

REFERENCES

- N. U. Arakelian, Uniform approximation on closed sets by entire functions, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 1187-1206.
- 2. D. H. Armitage and S. J. Gardiner, The growth of the hyperplane mean of a subharmonic function, J. London Math. Soc. (2) 36 (1987), 501-512.

- 3. D. H. Armitage and M. Goldstein, Better than uniform approximation on closed sets by harmonic functions with singularities, Proc. London Math. Soc. (3) 60 (1990), 319-343.
- 4. S. Helgason, The Radon transform, Birkhäuser, Boston, Basel, and Stuttgart, 1980.
- 5. L. Zalcman, Uniqueness and nonuniqueness for the Radon transform, Bull. London Math. Soc. 14 (1982), 241-245.

Department of Pure Mathematics, The Queen's University of Belfast, Belfast BT7 1NN, Northern Ireland

E-mail address: d.armitage@uk.ac.qub.v2

DEPARTMENT OF MATHEMATICS, ARIZONA STATE UNIVERSITY, TEMPE, ARIZONA 85287