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NONUNIQUENESS FOR THE RADON TRANSFORM

D. H. ARMITAGE AND M. GOLDSTEIN

(Communicated by J. Marshall Ash)

Abstract. There exists a nonconstant harmonic function * on 1* , where

N > 2 , such that Jp \h\ < +oo and fp h = 0 for every (N - 1 )-dimensional

hyperplane P.

Let / be a real- or complex-valued function on RN (N > 2), and suppose

that / is integrable on each (N - 1)-dimensional hyperplane P in R^. The

Radon transform / of / is defined on the set ¥N of all such hyperplanes by

f(P) = JpfdX, where X denotes (N - 1)-dimensional Lebesgue measure on

P. We refer to Helgason [4] for the general theory of the Radon transform and

its applications.

There are several proofs that if / is continuous and integrable on R^ and

/ = 0 on P^, then / e 0 on l" (see Zalcman [5] for references); the sim-

plest proof proceeds by showing that, under the stated hypotheses, the Fourier

transform of / vanishes identically. With TV = 2, at least, the hypothesis that

/ is integrable on RN cannot be removed. Indeed, identifying R2 with C,

Zalcman [5, §5] showed that there exists a nonconstant entire function </> such

that 0 = 0 on P2 . The real part h of 0 provides an example of a nonconstant

harmonic function on R2 such that h = 0 on P2. Zalcman's proof depends

on an approximation theorem of Arakelian [1, p. 1189] for holomorphic func-

tions and has no obvious generalization to R^ (N > 3). Here we use a recent

theorem [3, Theorem 1.1] on harmonic approximation to prove the following

result.

Theorem. There exists a nonconstant harmonic function h  on RN   (N > 2)

such that h = 0 on VN.

To the best of our knowledge, it has not hitherto been decided whether there

exists even a nonconstant continuous function / on 1^   (N > 3) for which

7=0 on PN.
We denote a typical point of RN by x = (xx, ... , Xn) and write

(x,y)=xxyx + --- + xNyN,    ||x|| = y/(x, x)      (x,y£RN).
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Let 5 denote the sphere {yeR^: ||y|| = 1}. If y g 5 and t g R, we write

P(y,t) = {x£RN :(x,y) = t}■

if -oo < a < b < +00, we put

Q(y,a,b)=  U P(y,t).
a<t<b

Thus P(y, t) is an (N- 1)-dimensional hyperplane and Q(y, a, b) is isomet-

ric to R^-1 x (a, b). The point at infinity of R^ is denoted by j/ , and we

understand RN U {j/ } to be equipped with the Aleksandroff one-point com-

pactification topology.
To prove the theorem, we need a nonempty subset E of R^ with the fol-

lowing properties:

(i) E is open in R^ ;
(ii) £u{i} is connected and locally connected in the topology of R^ U

(iii) if y £ 5 and 0 < a < +00, then E n Q(y, -a, a) is bounded;
(iv) if y £ 5 then there exists a positive number T, depending on y, such

that at least one of the sets E n Q(y, -00, -T) and E n Q(y, T, +00)
is empty.

An example of such a set E is as follows. Let 7 = [0, +00), define yi: I —*

RN by ^(c;) = (c;,£2,...,cf),andput

(1) E=lx£RN:inf\\x-yi(c;)\\<l\.

We owe this example to a remark of Dr. T. B. M. McMaster; it replaces a
more complicated example of ours. It is clear that the set E defined by (1) has

properties (i) and (ii); we verify at the end of this note that it also has properties

(iii) and (iv).
Now fix a point 2 of a set E satisfying (i)-(iv) and define closed subsets of

R^ by

FX=RN\E,        F2 = {z},        F = FXUF2.

Clearly F is unbounded. Let cox and co2 be disjoint open subsets of R^

containing Fx and F2, respectively, and define a function u to be equal to 0

on (ox and equal to 1 on co2. Then u is harmonic on the open neighbourhood

ojxUa>2 of F. Also, properties (i) and (ii) hold with RN\F = E\{z} in place
of E. It follows from [3, Theorem 1.1] that there exists a harmonic function

h on RN such that

(2) \h(x)-u(x)\<(l + \\x\\)-N-x       (x£F).

In particular, \h(z) - 1| < 1 and limx_^ xeFh(x) = 0, so that h is noncon-

stant.
Let y be a point of 5. It suffices to show that h is integrable on P(y, t)

and h(P(y, t)) = 0 for all real t. Suppose that 0 < a < +00. By property

(iii), we have for some positive number r

Q(y, -a, a)\F C{x£RN : \\x\\ < r} = BN(r),    say.



NONUNIQUENESS FOR THE RADON TRANSFORM 177

From this remark and (2) we obtain that when \t\ < a

f      \h\dX< sup |/j| I dX+ I (1 -i- IIjcII)--^-1 </A(jc)
Jp(y,t) BN(r)       Jp(y,t)\F Jp(y,t)nF

< V(r) sup \h\ + [       (1 + llxlQ-"-1 dX(x),

where V(r) is the (N — 1 )-dimensional volume of BN^x(r). Thus the function

t -» Jp, t)\h\dX is locally bounded on R. Now, using a rotation of axes, we

find from known results (see, e.g., [2, Theorem 2]) that if s is subharmonic

on RN and the function t -» Jp. (, \s\dX is locally bounded on R, then the

hyperplane mean s(P(y, t)) is a convex function of t on R. Applying this

result with s = h and with 5 = —h, we obtain that h(P(y, t)) is a linear

function (i.e., a polynomial of degree at most 1) of t. By property (iv), there

exists a positive number T such that P(y, t) c F either for all t > T or for

all t < -T. Also, when P(y, t) c F we obtain from (2) that

\h(P(y,t))\<   f      (l + \\x\\)-N-xdX(x)
Jp(y,t)

=  /       (l + V(\\x\\2 + t2))-N-xdX(x)

<(i + \t\rx f     (l + W)-"^).
Jp(y,0)

so that h(P(y, t)) —> 0 either as J —> +oo or as f-» -oo. Since h(P(y, t)) is

a linear function of t, it now follows that h(P(y, t)) — 0 for all real t.

It remains to verify that the set E given by (1) has properties (iii) and (iv).
Fix a point y of 5 and define n: I -> R by

/,(£) = 5><^.
7=1

Note that | >/(£)! —► +oo as £ —> +oo and that n is either bounded above or

bounded below on /. For each point x of E, there exist a number £,x in /

and a point x' of Bn(\) such that x = yi(£x) + x'. Clearly £,x —► +00 as

x -> j/   (x G F). We have

(x,y) = (y(Zx),y) + {x',y)

= tl(^x) + 0(\) (X-J/,   XGF).

It follows that if 0 < a < +00 then {x G F : |(x, y)| < a} is bounded, so that
(iii) holds. It also follows that there exists a positive number T such that either

(x, y) < T for all x in E or (x, y) > -T for all x in E, so that (iv) holds.
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