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ON THE JACOBIAN CONJECTURE

SHULIM KALIMAN

(Communicated by Louis J. Ratliff, Jr.)

Abstract. We show that the Jacobian conjecture can be reduced to a weaker

conjecture in which all fibers of coordinate functions are irreducible.

1. Introduction

Let (x, y) be a coordinate system in C2. The Jacobian Conjecture says that

a polynomial mapping (p, q): C2 —► C2 whose Jacobian J(p, q) — dp/dx •

dq/dy-dp/dy-dq/dx is equal to 1 is invertible. This conjecture first appeared
in [K], and one can read a nice survey of the results that concentrated around

the conjecture in [BCW]. Recall that a polynomial fiber is reducible if it is the

union of more than one algebraic curve. Under the assumptions of the Jacobian

conjecture, the system dp/dx = dp/dy — 0 has no solution. From this it

follows that different components of a reducible fiber of p do not intersect and

the polynomial p has no multiple fiber. Nontrivial polynomials of this kind

with reducible fibers exist and x(xy + 1) is the simplest example. We shall
formulate a new problem.

Weak Jacobian Conjecture. Let (p, q): C2 -> C2 be a polynomial mapping with

J(p, q) = 1. Suppose that for every c £ C the fiber {(x, y)\p(x, y) = c) is
irreducible. Then the mapping (p, q) is invertible.

In other words, the additional condition on the polynomial fibers means that
for every c G C the polynomial p(x, y) - c is prime. Our main result is the

following

Theorem. If the Weak Jacobian Conjecture is true then the Jacobian Conjecture
is true.

In order to prove this fact for each couple of polynomials (p, q) with J(p, q)

= 1 we shall find a polynomial automorphism a = (qi , a2): C2 —► C2 such that

Pi = ai(P> O) does not have reducible fibers. We would like to note also that

in order to prove the Weak Jacobian Conjecture one may try to show that a
polynomial whose fibers are irreducible and different from C must have a fiber

with a singular point. The last fact holds if this polynomial is good at infinity

[NR]. Application of the current theorem enables us to simplify the proof of
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the results in [SI-S3], since the existence of reducible fibers makes the original

proof more complicated. Recall an equivalent formulation of the Jacobian Con-

jecture: if J(p, q) = 1 then the ring C[p, q] generated by p and q coincides

with the polynomial ring C[x, y].
The following fact is the two-dimensional case of a theorem in [F] (it is a

direct corollary of [W] as well).

Theorem A. If J(p, q) = 1 and there exists a polynomial h such that C[p, q, h]

= C[x, y], then C[p, q] = C[x, y].

Combination of our main result and Theorem 3 from [R] gives another proof

of Theorem A.

2. Proof of Theorem

Let P: M -> C2 be a regular mapping from a smooth connected algebraic

surface M to C2. Suppose that the dimension of the inverse image P~l(w)

of every point w £ C2 is equal to 0. Then there exists an affine algebraic curve

T c C2 such that for every w g C2 - Y the inverse image P~l(w) consists

exactly of n points (these points are not multiple). We shall say that Y is the

branch curve of P.

Definition. We shall say that an irreducible curve G is " Y proper," if the em-

bedding i: (j-T—>C2-T generates an epimorphism /'*: ni(G-Y) —> 7T2(C2-T)

from the fundamental group 7t\(G-Y) to the fundamental group nx (C2 - Y).

Lemma 1. Let G be a smooth irreducible affine algebraic Y proper curve. Then

the inverse image Gi = P~l(G) is an irreducible curve in M.

Proof. Let w £ C2-Y and let P~x (to) = {z\, ... , zn) . Since M is connected,

there is a path s,j: [0, 1] —> M-P~l(Y) for which %(0) = z, and %(1) = z3.

Put Xij = P o Sjj. Then t(J is a loop and t(J(0) = t,;(1) = to. This loop
generates an element [t,7] of the fundamental group 7ti(C2 -Y,w). Let x\j

be another loop that generates [ty]. By the homotopy lifting theorem [FR,

Chapter 4] P~x(x'ij) contains a path that connects the points z, and Zj. Let

£■' be the set of singular points of G1 . Then the curve Gl is irreducible if and

only if the set Gl - Sl is connected. Suppose that tt>G^ = G-(ru P(S1)).

Since /*: %\(G - Y, w) —► 7Ti(C2 - Y, to) is an epimorphism, we can choose

all the loops {t,;} so that t,7 c G - Y. Moreover, by perturbing these loops,

we may suppose that T// C A. In order to prove that Gl - Sl is connected

it is enough to present a path that connects the point z\ with an arbitrary
point z' £ C71 - Sl. Let to' = P(z'). Since A is connected, there is a path

t: [0, 1] —> A with t(0) = to and t(1) = to'. Then the inverse image P~[(t:)

contains a path that connects z' with Zj for a certain j. But z\ and Zj are

connected by S\j . This implies the desired conclusion.   □

The following fact is obvious.

Lemma 2. Let {y\: [0, 1] -♦ C2 - Y) be a family of loops in C2 - Y that depend
continuously on a real parameter t. Suppose that y\(0) = to, for every i. If the

loops {yf} generate the fundamental group n\(C- Y, too), then for each t the

loops {y'} generate the fundamental group rt\(C -Y, wt).   0

Choose a coordinate system (u,v) in C2.



ON THE JACOBIAN CONJECTURE 47

Lemma 3. Let f(c, u,v) be a polynomial in C3. Let Fo = {(u,v) £ C2|

f(0, u,v) = 0}. Assume Fo contains a smooth irreducible component E so

that either df/du\s or df/dv\E does not equal 0 identically. If the curve E is
Y proper, then there exists a neighborhood U of the origin in C such that for
every c £ U the curve Fc = {(«, v) £ C2|/(c, u, v) = 0} contains a component
that is Y proper.

Proof. Choose loops yf: [0, 1]—>E-Y with Wq = yf(0) for every i such that

these loops generate the group 7ri(C2 - Y, too). Consider K0 = U, vf ■ Since

the manifold C2 - Y is an algebraic variety, its fundamental group is finitely

generated (which follows from [Z] as well). Thus we may suppose that T is

compact. Without loss of generality, consider only the case when df/dv is not

identically zero on E. Since E is smooth, one can perturb yf a little so that

df/dv is different from zero at every point of T. Let V0 be a sufficiently small

neighborhood of T in C2 - Y. Choose a sufficiently small neighborhood U of

the origin in C, and put V1 = {(c, u, v) £ C3|(w, v) £ VQ, c £ U}. One may

suppose that df/dv is different from 0 in Vx . Then there exists the function

vv for which df/dc-\-df/dv-vv = 0 on V1. Hence the vector field (1, 0, vv)

is tangent to the surface H = {(c, u, v)\f(c, a,») = 0}cC3. Let y>t be the

phase flow associated with this field. Put K0 = (J, yf • Then Kt = <Pt(Ko) C F,

for every arbitrarily small t. The set Kt is the union of loops y\ = (pt(yf),

and we are under the assumptions of Lemma 2. For each fixed t these loops

belong to the same component of the curve Ft, since they have the common

point <t>t(oio). This concludes the proof of Lemma 3.   □

To each complex line {(u, v) £ C2\au + bv + c = 0} in C2 one may assign

the point (a, b, c) £ CP2. Thus we can consider the set of complex lines in

C2 as W = CP2-(0,0, 1) (the point (0,0, 1) has to be deleted since a and
b cannot equal 0 simultaneously). Let the mapping p: W —► CP1 be given

by the formula (a, b, c) -> (a, b). Suppose that P: M -> C2 and Y are the
same as above. Let Y* be the dual curve, i.e., Y* is the closure in W of the

set of points that correspond to tangent lines to Y at the smooth part of Y.
We shall denote the set of singular points of T of S. For every to G C2 we

put K(w) = {/ £ W\w £ /} (here we consider / as both a point in W and

as a line in C2) and K = \Jw€SK(w) c W. Let the curve Y be given by an

equation h(u, v) = 0 and let A = {X, = (a,, bt)} c CP1 be the set of roots of

the leading homogeneous part of h . For each X G CP1 we put L(X) = p~{(X)

and L = (JAeA L(X). Suppose that P = (p, q) is the coordinate representation
of P. Let X be the closure (in the Euclidean topology of W) of the set

of points {(a, b, c)} such that the curve {z £ M\ap(z) + bq(z) + c = 0} is
reducible.

Lemma 4. The set X is contained in Pu^UL.

Proof. We may require that the polynomial h does not have repeated factors.

Put m = deg h. Recall that a line / is in general position relative to Y,

if the set / n Y consists of m different points. By Lefschetz's theorem, for

every line /cC2 in a general position the embedding /: / •—> C2 induces an

epimorphism /»: v.\(f - Y) -> 7ti(C2 - Y) (see [Z] or [A]). Thus, by Lemma
1, it is enough to check that if a line / ^ PuA'Ul then / is in a general

position. Let C2 «-> CP2 be a natural embedding, E = CP2 - C2, Y be the
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closure of Y in CP2, and 7 be the closure of / in CP2. Then the set 7n F

consists of m points for ajine / in a general position. Note that if / ^ L

then En7nT = 0, i.e., 7nF = /nrcC2. If/ £ Y*uK as well, then
/ meets Y transversally. Thus each / ^ Pu^uL meets Y transversally at

m different points in C2.   □

Note that if p(X) is a finite set, then for every b such that (\,b) $ p(X)

each fiber of the regular function p(z) + bq(z) is irreducible. Since p(L) = A

is a finite set, the set p(X) is finite in X n (K U P) is finite, or in other words,

dimXn(KuY*) = 0.

Lemma 5. The set X is algebraic.

Proof. Let D be an irreducible component of Y* l) Kl) L. It suffices to prove
that the set DnX is algebraic. Consider the algebraic variety B = {(x, /)|x G

P~l(/), / £D] c M xW. Let x: B -> D be the natural projection, and let

n(c) be the number of irreducible components of a fiber Qc = {x\(x, c) £ B}

of this mapping. We shall show later that the function n(c) on D coincides

with a constant n outside a finite set C c D. (Actually, a stronger fact holds.

It is well-known that outside a finite subset of D all fibers are diffeomorphic.

For our purpose it suffices to check the simpler assertion.) If n > 1 then

X d D - C, i.e., In/) = D. Otherwise X nD c C and X nD is again
an algebraic variety. Now we have to show that the set C is finite. Let B'

be the smooth part of B. The algebraic variety A = B - B' is the union

of a finite number of irreducible algebraic curves and points. Now we define

the set Do c D such that for c £ Do an irreducible component of the set A

belongs to the fiber Qc. Hence the set Do is finite. Note that the number of

components of Q'c = Qc n B' coincides with the number of components of Qc,

when c $ D0 . Consider a smooth compact algebraic curve D D D - D0. Put
<f> = t\b' • Standard results from the theory of resolution of singularities yield

the existence of a smooth compact algebraic variety B D B' for which there

exists an extension <f>: B —> D of the mapping </>. Let B\ be the subset of

points in B for which the mapping <f> is not smooth. Then D\ — <j>(Bi) is

a finite algebraic subvariety of D [M, Proposition 3.7]. The proper mapping

4>: 5 - <f> (Di) —* D - Di is smooth at every point and, therefore, it is a

smooth fibration [MK, Chapter 1, Theorem 4.1]. In particular, the number of

irreducible components of the curve Qc = <f> (c) is constant when c £ D\ .

The set A1 = B - B' is an algebraic curve. Let D2 be the subset of points

c £ D such that (j>(E) = c for a certain irreducible component E of the curve

A'. Since the number of irreducible components of the curve_A' is finite, the

set D2 is finite. Put C = Dx U D2. If c i C then the set Qc - Q'c is finite.

Thus the curves Qc and Q'c have the same number of irreducible components.

The algebraic set D - (D - D0) is finite.   □

Lemma 6. Let / bea Y proper line in K(w) for some point to. Thedimension

of XnK(w) = 0.

Proof. One may suppose that to coincides with the origin and that / is {u =

0} . Let fc = {(u, v)\u + cv = 0}. By Lemma 3, we have the epimorphism

'*: ^i(4 - r) -* tfi(C2 - T), when \c\ is sufficiently small. By Lemma 1 this
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implies that P~l(/C) is irreducible. Since X n K(w) is an algebraic variety,

there can be only finite number of complex numbers {ck} such that the line

/Ck £ K. Thus dimXn K(w) = 0.   □

Note that if Y is reducible then P is the union of the duals of its reducible

components.

Lemma 7. Let T, be an irreducible component of Y, let Y* be the dual curve for

T,, and let I be a tangent line to T, at a regular point to,. If / is Y proper

then dimXnr* = 0.

Proof. We may again suppose that to is the origin and / is {u = 0}. The

curve T, is locally given by the equation u = u(v) = av" + vn+lh(v), where

a ^ 0 and n > 2. For every point (u(c), c) G T, when |c| is sufficiently small,

we have the following equation for the tangent line to T, at the point

u - nac"-xv + (n- \)acn + v • 0(\c\") + 0(\c\"+l) = 0.

Since X nY* is an algebraic variety, application of Lemma 3 again provides

the desired conclusion.   □

Let Ag: C2 -> C2 be a polynomial automorphism given by the formula

Ag(u, v) = (u + g'(v), v),

where g G C[t;] is a polynomial in one variable. Put Pg = Ag o P, and let the

symbols Yg,Yig,Y*g,Y* , Xg, Kg(w), Kg, Lg, Sg have the same meaning for

the mapping Pg as the symbols Y, Y,■■, P, T), X, K(w), K, L, S for P.

Lemma 8. Let the line {v = 1} be Y proper. Then there exists a polynomial

g £ C[v] satisfying

(1) for every irreducible component Yig c Yg there is a regular point to,' G

Yig such that the tangent line /tl to Yig at w't is Yg proper,

(2) for every z'- g Sg there exists a line f2 £ Kg(z'f) that is Yg proper.

Proof. Choose to, G T, so that the tangent line to T, at to, is given by the

equation u + bjv + d} = 0, where bj, dj £ C. Let V be the set of the v-

coordinates of the points of the set S U {to,} . Choose a polynomial h £ C[v]

so that for every fo G V we have

(1) h(v0) = ^(v0) = 0.

Put g(v) = c(v - 1) • h(v), where c is an arbitrarily large number. Suppose

that a line /2 = {u + bjv+d2 = 0} belongs to K(zj) , where Zj £ S. Choose a

line / given by the equation {au + bv + d = 0} . Then the curve /g = Ajl(/)

coincides with

(2) au + ag(v) + bv + d = 0.

Vice versa: for each curve /g given by the equation (2) the curve Ag(/g) is

a complex line. For k = 1, 2 put /gkl = {(u, v)\u + g(v) + bkv + dk =

u + bkv + dk + c(v - l)h(v) = 0}. By (1), the curve /gu is tangent to T, at to,.
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Hence Ag(/gu) is tangent to ^(r,-) at to- = Ag(wi). Note that Ag(Yj) = Yig ,

Ag(Y) = Yg , and the equation of the curve fkl can be written in the form

c~l(u + bkv + dk) + (v- l)h(v) = 0.

Recall that the line {v = 1} is Y proper. Application of Lemma 3 shows that

fki is T proper. Hence each line lk = Ag(fki) is Yg proper. It remains to

note that 5^ = Ag(S). This concludes the proof of Lemma 8.   □

Let P - (p, q): C2 —► C2 have the Jacobian J(p, q) = 1. Using an affine

automorphism of C2 if necessary, one may suppose that the line {v = 1} is Y

proper. Let Ag be the same as in Lemma 8. Then P is invertible iff Pg = Ag°P

is invertible. Keeping the previous notation, one may assert (by Lemma 7) that

dim^ n(KguY*g) = 0. Thus p(Xg) is a finite set. If a point (1, b) <£ p(Xg)
and Pg — (p\, q\) is the coordinate representation of Pg , then the polynomial
P\ + bq\ has irreducible fibers only. The theorem is proved.
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