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TOPOLOGICAL TYPES OF QUASI-ORDINARY SINGULARITIES
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(Communicated by Louis J. Ratliff, Jr.)

Abstract. A germ (X, x) of a complex analytic hypersurface in Cd+i is

quasi-ordinary if it can be represented as the image of an open neighborhood

of 0 in Cd under the map (ji,... ,Sj) *-* (sf,..., $5, C0*i, ■ • • , sd)), n >
0, where C is a convergent power series. It is shown that the topological

type of the singularity (X, x) C (Cd+1, 0) is determined by a certain set

of fractional monomials, called the characteristic monomials, appearing in the

fractional power series f(f,    , ... , tj").

1. Introduction

Let (X, x) be a germ of an irreducible hypersurface of dimension d in

(Cd+l, 0). By the Weierstrass preparation theorem, there is a finite map of

analytic germs n: (X, x) —► (Cd, 0). If this map n has a normal crossing

discriminant at 0 G Cd then the germ (X, x) is called a quasi-ordinary sin-

gularity. Such singularities are of the simplest type in terms of discriminants

and arise naturally in the Jungian process of desingularization. For example,

every plane curve singularity is quasi-ordinary (d = 1). Quasi-ordinary surface
singularities (d = 2) were introduced by Jung [J] in 1908. Zariski [Zl] studied

these singularities in the context of the problem of resolving singularities. More

rigorous and comprehensive study began with Lipman's thesis [L3]. (For more

details, see Lipman [LI, L2].)
An irreducible quasi-ordinary singularity (X, x) can be represented as the

image of an open neighborhood of 0 in Cd by the map

(si, ... , sd) >-* (5?, ... , s%, C($i, ... , sd)),        n>0,

where C is a convergent power series [A, Theorem 3]. Among the fractional

monomials appearing in the expansion ^(t\ln , ... , txJ") = J2cai,...,aj"] • -C >

one can extract some monomials, called the characteristic monomials, whose

exponents are classically called Puiseux pairs in the case of plane curve singu-

larities.

In this paper, we will prove that these characteristic monomials determine the

embedded topology of the pair (X, x) c (Cd+l, 0) (Theorem 3.2). We show

this by constructing a vector field on a (2d + 1 )-dimensional sphere in Cd+i

Received by the editors January 15, 1991 and, in revised form, May 24, 1991.

1991 Mathematics Subject Classification. Primary 14B05, 32C40.

©1993 American Mathematical Society
0002-9939/93 $1.00+$.25 per page

53



54 KYUNGHO OH

whose integral curves give rise to a homeomorphism between the links of two

quasi-ordinary singularities with the same characteristic monomials. Lipman

[L2] indicated that this also follows from a saturation theorem of Zariski [Zl,

Theorem 6.1], since the characteristic monomials determine the C{t\ , ... , td}-

saturation of the local ring cfx tX = £{h , ... , td}[£] • The converse was proved

by Gau [G] using Lipman's result on the topological invariance of the branching

sequences [LI].

2. Quasi-ordinary singularities

We closely follow Lipman [LI, §5] for the basic definition and notations in

this section.

Definition 2.1. An irreducible hypersurface analytic germ (X, x) c (Cd+[, 0)

is called a quasi-ordinary singularity if there exists a finite map of analytic germs
n: (X, x) —► (Cd, 0) induced by a linear projection from Cd+l to Cd with a

normal crossing discriminant A at 0; in other words, there is a local coordinate

system (t\, ... , td) of Cd at 0 such that the discriminant locus A is defined

by f\ • • ■ teJ = 0, e, > 0. Moreover, the map n is called a quasi-ordinary

projection.

After a suitable coordinate change, we may assume that the map n is the re-

striction of the projection map Cd+l —► Cd sending (t\,..., tj, z) ■-► (ti,...,

td) and that its discriminant locus A is contained in the coordinate hyperplanes

of Cd . For such a coordinate system, the Weierstrass preparation theorem im-

plies that the germ (X, x) c (Cd+i, 0) is defined by an equation

F(ti ,...,td,z) = zm + f(tx,..., td)zm~x + ■■■ + fm(tx ,...,td) = 0

where (t\, ... , td, z) is a local coordinate system of Cd+l and the f are
nonunit convergent power series. From Riemann Extension Theorem and the

fact that the fundamental group of the complement of the discriminant locus

is a free abelian group, it follows that the roots C, of F as a polynomial in

z belong to a fractional convergent power series ring C{t\/n, ... , tlJ"} for

some n > 0 (cf. [A, Theorem 3] for a purely algebraic proof). Thus the germ

(X, x) can be represented as the image of an open neighborhood of 0 in Cd

under the map (s\, ... , sd) *->• (s^ , ... , s% , C(s\, ... , sd)) n > 0 where C is
a convergent power series. In this sense, £ is called a parametrization of the

germ (X, x). Since the discriminant A of F has a normal crossing, A is of

the form

H(d-Cj) = tell---teJ-e(tl,...,td),       e(0,...,0)#0.

Since t1/" , ... , tlJn are irreducible elements in the unique factorization domain

C{r|/n,...,4/B},wehave

(1) r. _ C. = Mijeij(t\/n ,..., td/n),        e„(0, ... , 0) / 0,

where

(2) Mu = tali/ntfn---ta/n

with integers a/ > 0 depending on (/', j).
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In general, a fractional convergent power series ( G C{t\/n, ... , txJn} is

called a quasi-ordinary branch if any two conjugates £,- ^ £,- of C over

<£{t\, ... , td) satisfy equation (1). The fractional monomials Mtj are called
the characteristic monomials of £. Note that the characteristic monomials Af,-_,-

are not units since £,- and £;- are nonunits in C{t\/n , ... , tlJn} . Now, we shall

give some elementary properties of the characteristic monomials of a given

quasi-ordinary branch £ . Let

& c 2>{Q c Sfn

be the respective fraction fields of

C{tl,...,td}cC{tl,...,td}[£]cC{t\/n,...,td/n}.

Then £?(C) is a Galois extension of Sf since 3n (and hence -S^C)) is an

abelian extension of Sf . Hence the Galois group G = Aut(^f(Q/^f) consists

of m = [J2?(Q : Sf] elements and the set of all conjugates {£,|1 < i < m} of

£ := Ci over Sf is {yQy £ G} . Moreover, we have £,- - £/ = 7' {Ck - C) for

some y £ G and k . Thus the set of all possible characteristic monomials of (

is

{Mk := Affci12 < k <m},

where Mkl is defined as in (1) and (2). We may have Mk = Mk, for some
k ^ k'. The identity

Mten - Mjen = (d - Ci) - (Cj - Ci) = Afy««

implies

Lemma 2.2 [L2, Lemma (5.6)]. T/ze sef {A4|2 < A: < m) of characteristic

monomials of quasi-ordinary branch C is totally ordered by divisibility (i.e., Mj <

Mj if Mi divides Mj in C{t\ln,..., txJn}).

This lemma implies that we can reindex the set of distinct characteristic

monomials in such a way that

(3) Mi < M2 < ■ ■ ■ < Mg

where g is the number of the distinct characteristic monomials. In this case,

M\ is called the minimal characteristic monomial of £. Moreover, the follow-

ing holds:

Lemma 2.3 [LI, Lemma (5.7) and Remark (5.8)]. Let {Mk \ 1 < k < g} be the
set of distinct characteristic monomials of a quasi-ordinary branch ( indexed as

in (3). Then we have the following chain of the subfields of Jt?(Q :

3> %S?(MX) C-SW, M2) c ... C5f(Ml, M2, ... , Mg) =&(£).

In particular, each characteristic monomial Mk must appear with nonzero coef-

ficient in the fractional power series (.

The previous two lemmas gives

Proposition 2.4. For the characteristic monomials Mi of £ indexed as in (3),

let

Ri := C[*i ,tTl,...,td,qx,Mx,M^,..., Mt, M~^n C{t\/n,..., tlJ"}
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be the ring of the intersection of a formal power series ring and a convergent

power series ring. Then for every quasi-ordinary branch £, there exist unique

nonunit elements f in Rj such that

(4) £ = /o + qMi + MJX + c2M2 + M2f2 + ■■■ + cgMg + Mgfg .

Notation 2.5. Let £ be a quasi-ordinary branch as in (4). For 0 < I < g, £[/1

denote a quasi-ordinary branch such that

(5) C[l] = C-Mifi,

and £/(£, k) denotes the set of conjugates Ck, of £ such that

(6) C-Ck, = Mkek,(t\/n,..., tf),       eki(0,..., 0) ̂  0.

Remark 2.6. Note that £ and £[/1 have the same set of characteristic mono-

mials and that &{£) = 5?(C[l]). Moreover we have (y • f)1'1 = y • C[!] for

y£ku\(&(Q/S?).
The following distance estimates between the conjugates of £ and £M will

be used in the proof of the main theorem.

Proposition 2.7. Let £(f,l/", ... , txJn) £ <C{t\ln, ... , tlJ"} be a quasi-ordinary

branch, Ck> G U(C, k) and Ck' c U(C, k'). Then for any large c > 0, there

exist positive numbers 8\, ... , 6d such that for s = (s\, ... , sd) £ Cd with

N < Si, we have the following inequalities:

(7) £(s)-£[/](s) = a,(s)-£i;](s)   ifk>l,

(8) c|C(s)-C['](s)|<|C(S)-Cfci(S)|   ifk<l,

(9) c\Ck,(s)-CH(s)\<\C(s)-Ck,m   ifk<l-

Proof. Let y be an element of Aut(J2f(C)/£?) such that y • £ = Ck, ■ By Remark

2.6, we also have y • C[lx = £[' • We will show each inequality separately.

Proof of (7). Since £ - Ck, = Mk • ek., we have y-f = f for f £ Rt, i < k.
Thus

f*» - $} = y •(C " C"])    (by Remark 2-6)

= y • MJi = Af///    (since M/fi £ Rt and / < k)

= £_£[<!.

Proof of (8). Since £ - £[/] = A//// and £ - £*.. = Mkeki, it is sufficient to
show that for s\, ... , sd with sufficiently small \si\,

c\M,f,(s)\<\Mkeki(s)\.

This inequality holds because the analytic function

(cM,f,/Mkeki)(s)

vanishes at the origin. Note that Mkeki divides M/ and // is a nonunit.

Proof of (9). By Remark (2.6), we have

Cki-C[lj = v(C-Cll]) = y'Mlfl.
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Since the action of y on fractional monomials is given by multiplication of

complex numbers, there is a nonunit element g/ such that y-M/f = M\g\.

Hence the same argument as in the above proof works.   D

For a quasi-ordinary branch £, let

{£,=£,...,£„,}     (resp. {tf = {«, ... , $})

be the set of conjugates of £ (resp. £(/] defined as in (5)). For s = (s\, ... , sd)

£ Cd and /, we define a line segment £,£,- (s) by

(10) £#(s) = {/&(■) + (1 - t)Cf\s)\0 <t<l}.

Corollary 2.8. For s in Cd outside the coordinate hyperplanes with sufficiently

small 2~Z M2. the line segments £(£,-/1(s), i = 1, ... , m, do not intersect each

other unless Ci = C|' •

Proof. It is enough to show that for a fixed £ — Ci, the line ££[/1(s) does not

intersect with £/t,£['(s). For k > /, this is true because of (7) and the fact that

£(s) - £[/](s) ^ a(C(s) - £(t,(s)) for any real number a. For k < I, the statement

holds by inequalities (8) and (9).   □

3. Topological type and characteristic monomials

Definition 3.1. Let (X, x) c (Cd+l, 0) and (X1, x') C (Cd+l, 0) be two germs

of analytic sets. Then (X, x) and (X', x') are said to have the same topological

type if there exist open sets U\ ,U2 c Cd+1 containing the origin 0 and a

homeomorphism h: U\ -* U2 such that h(0) = 0 and h(X n U\) = X' n U2.

To state our main result, we set up some notation. Let (X, x) c (Cd+l, 0)

(resp. (X', x) C (Cd+l, 0)) be the quasi-ordinary singularity given by the pa-

rametrization £ (resp. £[/]),andlet n\x: (X, x) -> (Cd, 0) (resp. n\x>: (X', x)
—> (Cd, 0)) be a quasi-ordinary projection for (X, jc) (resp. (X1, x)) induced

by the map n: Cd+l -* Cd projecting (t\, ... ,td, z) to (t\, ... ,td). Here

we assume £ ^ £[/] by avoiding the trivial case. The following theorem im-

plies our main result, particularly, that the topological type of quasi-ordinary

singularities are determined by their characteristic monomials.

Theorem 3.2. The analytic germs (X, x) c (Cd+{, 0) and (X', x) c (Cd+l, 0)

have the same topological type.

Proof. We set

Di = {teC\\t\<di},       6,>0,

D(di, ... , dd+x) = D, x •■■ x Dd+X ,

Ni = D[ x ••• x £),-_! x dDj x Di+i x ■■■ x Dd+\,

d+i

dDd+l = {jNi,        Nf = dDd+l - Ni,

i=i

L = XndDd+l     and     L' = X'ndDd+i.
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By the conic structure lemma of Burghelea and Verona [BV], it is enough to
prove that the pair (dDd+l, L) is homeomorphic to (dDd+l, L') for suffi-

ciently small 8\, ... , Sd+i . We will prove this by constructing a smooth vector

field on dDd+l such that the flow lines send L to L' in a unit time. (We will

regard both L and L' as the subset of the same space dHd+l.)

By choosing Si, ... , 5d relatively small compared to dd+i, we will assume

that L and L' are contained in A^+1. Let A be the union of coordinate

hyperplanes in Cd and B = n~l(A). Note that 7t|L_B: L-B -* T := n(Ncd+l)-

A (resp. ti\l'-b: L'-B —> T) is an unbranched covering. Thus for every point

t G T- A, the fiber n\llB(t) (resp. ^|^_B(t)) consists of m := Aut(^f(C)/^f)
distinct points. More precisely, we have

"IZ-bW = i(si . • • • > sd > d(s\, ... , sd))\i = 1, ... , m}

and

*IZ.!-*(t) = (W . • • •, $. Cffo, • • •, sd))\i =l,...,m}

for some s\, ... , sd £ C. Here £1, ... , £m (resp. £[/], ... , Cm) are conjugates

of £ (resp. C[l]) ■

Define a map y/: L-B —► L'-J? by sending p = (s",..., s$, Cj{s\, ■■■ , sd))

in the fiber  n\2l_B(t)  to   y/(p) = (s^, ... , s%, C[J](s\, ... , sd))  in the fiber

n\l)-B^ • ^nis map is independent of the choice of S\,...,sd, since

we have  Ci(o)\Si, ... , <odsd) = (y-Ci)(s\, ... , sd),  co'J = 1  for some  y £

Aut(J2f(C)/£?) and (y-£)[/] = £[/]. Moreover, it is a diffeomorphism because

the map y/ is continuous and the covering maps n\i-s and 7c\l>-b are local

diffeomorphisms in the following commutative diagram:

L-B —¥-^ L'-B

«Iz.-b\ / Av-b

T

Let py/(p) denote the real line segment joining p and y/(p) in R2d+2 = Cd+l .

Note that these lines lie in dDd+] by the assumption that L, L' c Ncd+l .

For sufficiently small 8\, ... , Sd+\ , these lines never intersect each other by

Corollary 2.8. Thus the set

J(L-B,L'-B)=    (J   p~y7(p~)
peL-B

is a smooth manifold with boundary in <9Dd+1 . In fact, (L - B) x [0, 1] is

diffeomorphic to J(L-B, L' -B') via the map (p, t) >-^ (p, (I - t)p + ty/(p)).
Now define a vector field T on J(L-B,L' - B) by

2^(0) = V(P) - P   when « G />^(p).

Then the vector field 'V is well defined and smooth. Using a partition of unity,

we can extend 'V to a vector field on dT>d+] supported on a proper subset of

dDd+l . Since every vector field with a compact support generates an isotopy

[H, Theorem 1.2, p. 179], we have a homeomorphism of dHd+x , which maps



TOPOLOGICAL TYPES OF QUASI-ORDINARY SINGULARITIES 59

L-B to L' -B . By the continuity, this homeomorphism maps L to L'. This

completes the proof.   □
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