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TOPOLOGICAL TYPES OF QUASI-ORDINARY SINGULARITIES
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ABSTRACT. A germ (X, x) of a complex analytic hypersurface in C4+! is
quasi-ordinary if it can be represented as the image of an open neighborhood
of 0in C? under the map (s;, ..., sa) P (57 e 87, 8(s1, -5 80)), m >
0, where { is a convergent power series. It is shown that the topological
type of the singularity (X, x) C (C9*!, 0) is determined by a certain set

of fractional monomials, called the characteristic monomials, appearing in the

fractional power series { (t:/ o, t,'i/ .

1. INTRODUCTION

Let (X, x) be a germ of an irreducible hypersurface of dimension 4 in
(C4+!0). By the Weierstrass preparation theorem, there is a finite map of
analytic germs 7: (X, x) — (C¢,0). If this map n has a normal crossing
discriminant at 0 € C? then the germ (X, x) is called a quasi-ordinary sin-
gularity. Such singularities are of the simplest type in terms of discriminants
and arise naturally in the Jungian process of desingularization. For example,
every plane curve singularity is quasi-ordinary (d = 1). Quasi-ordinary surface
singularities (d = 2) were introduced by Jung [J] in 1908. Zariski [Z1] studied
these singularities in the context of the problem of resolving singularities. More
rigorous and comprehensive study began with Lipman’s thesis [L3]. (For more
details, see Lipman [L1, L2].)

An irreducible quasi-ordinary singularity (X, x) can be represented as the
image of an open neighborhood of 0 in C? by the map

(S15 ., 8a) = (ST, ..., 80,8081, ...,584)), n>0,

where { is a convergent power series [A, Theorem 3]. Among the fractional
monomials appearing in the expansion C(t,l/" Y s t;/") =3 Cayyyagli o 15,
one can extract some monomials, called the characteristic monomials, whose
exponents are classically called Puiseux pairs in the case of plane curve singu-
larities.

In this paper, we will prove that these characteristic monomials determine the
embedded topology of the pair (X, x) C (C4+!, 0) (Theorem 3.2). We show

this by constructing a vector field on a (2d + 1)-dimensional sphere in C4+!
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whose integral curves give rise to a homeomorphism between the links of two
quasi-ordinary singularities with the same characteristic monomials. Lipman
[L2] indicated that this also follows from a saturation theorem of Zariski [Z1,
Theorem 6.1], since the characteristic monomials determine the C{¢,, ..., t;}-
saturation of the local ring &y » = C{t1, ..., t;}[{]. The converse was proved
by Gau [G] using Lipman’s result on the topological invariance of the branching
sequences [L1].

2. QUASI-ORDINARY SINGULARITIES

We closely follow Lipman [L1, §5] for the basic definition and notations in
this section.

Definition 2.1. An irreducible hypersurface analytic germ (X, x) c (C?+!, 0)
is called a quasi-ordinary singularity if there exists a finite map of analytic germs
n: (X, x) — (C4, 0) induced by a linear projection from C%*! to C¢ with a
normal crossing discriminant A at 0; in other words, there is a local coordinate
system (f1,...,t;) of C¢ at 0 such that the discriminant locus A is defined
by ---t§" =0, e¢; > 0. Moreover, the map = is called a quasi-ordinary
projection.

After a suitable coordinate change, we may assume that the map = is the re-
striction of the projection map C%*! — C¢ sending (¢,, ..., tz, z) — (t1, ...,
t;7) and that its discriminant locus A is contained in the coordinate hyperplanes
of C?. For such a coordinate system, the Weierstrass preparation theorem im-
plies that the germ (X, x) c (C?+!, 0) is defined by an equation

F(ty, ..oty 2)=2z"+ filty, ..., t)2™ Vbt frn(ty, ..., tg) =0

where (¢, ..., 7, z) is a local coordinate system of C?+! and the f; are
nonunit convergent power series. From Riemann Extension Theorem and the
fact that the fundamental group of the complement of the discriminant locus
is a free abelian group, it follows that the roots {; of F as a polynomial in
z belong to a fractional convergent power series ring C{t}/ ", t:/ "} for
some n > 0 (cf. [A, Theorem 3] for a purely algebraic proof). Thus the germ
(X, x) can be represented as the image of an open neighborhood of 0 in C?¢
under the map (s1, ..., Sg) — (57, ..., 85, {(s1,...,84)) n >0 where { is
a convergent power series. In this sense, { is called a parametrization of the
germ (X, x). Since the discriminant A of F has a normal crossing, A is of
the form

[MG-¢)y=16--t-etr,....ta),  €0,...,0)#0.

i#j
Since #}/", ..., t}/" are irreducible elements in the unique factorization domain
C{t:/n yeees t‘li/"} , we have
1 1
(1) Ci—Cj=Mijaij(t1/",...,td/"), €;;(0,...,0)#0,
where
(2) Mij =t‘111/n[‘212/n...t;d/”

with integers a; > 0 depending on (i, j).
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In general, a fractional convergent power series { € C{tl'/ ", t;/ "} is
called a quasi-ordinary branch if any two conjugates {; # {; of { over
C{ti, ..., t;} satisfy equation (1). The fractional monomials Af;; are called
the characteristic monomials of {. Note that the characteristic monomials M;;
are not units since {; and {; are nonunits in C{t}/ " t",/ "}. Now, we shall
give some elementary properties of the characteristic monomials of a given
quasi-ordinary branch (. Let

ZcZlca
be the respective fraction fields of
Cl{ti, ..., ta} CC{ts, ..., t}C iy, ..., )"}

Then Z({) is a Galois extension of & since .2, (and hence .Z({)) is an
abelian extension of .. Hence the Galois group G = Aut(Z({)/¥) consists
of m=[Z({):.Z] elements and the set of all conjugates {{;|1 <i < m} of
{:=1{ over £ is {y{|y € G}. Moreover, we have {; — {; = y-({x — () for
some y € G and k. Thus the set of all possible characteristic monomials of {
is

{My = M |2 < k <m},

where M, is defined as in (1) and (2). We may have M) = M, for some
k # k' . The identity

Mgy — Mjey = (8 — §1) — (§; — 1) = Mijeij
implies
Lemma 2.2 [L2, Lemma (5.6)]. The set {M;|2 < k < m} of characteristic
monomials of quasi-ordinary branch { is totally ordered by divisibility (i.e., M; <

M; if M; divides M in C{t;", ..., t]™}).

This lemma implies that we can reindex the set of distinct characteristic
monomials in such a way that
(3) M <M< - <M,

where g is the number of the distinct characteristic monomials. In this case,
M, is called the minimal characteristic monomial of {. Moreover, the follow-
ing holds:

Lemma 2.3 [L1, Lemma (5.7) and Remark (5.8)]). Let {M; |1 <k < g} be the
set of distinct characteristic monomials of a quasi-ordinary branch { indexed as
in (3). Then we have the following chain of the subfields of £ ({):

ZLCEM)GL M, M)G--GL (M, My, ..., Mg)=Z(().

In particular, each characteristic monomial M), must appear with nonzero coef-
ficient in the fractional power series (.

The previous two lemmas gives

Proposition 2.4. For the characteristic monomials M; of { indexed as in (3),
let

Ri:=Clt,, 67", o tg, £, My, M7 My, MYINC{,  d™)
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be the ring of the intersection of a formal power series ring and a convergent
power series ring. Then for every quasi-ordinary branch (, there exist unique
nonunit elements f; in R; such that

(4) C=ff)+ClM1+M1f1+C2M2+M2f2+'”+CgMg+Mgfg.

Notation 2.5. Let { be a quasi-ordinary branch as in (4). For 0 </ < g, ¢l
denote a quasi-ordinary branch such that

(5) (M=¢-Mmfp,
and U({, k) denotes the set of conjugates {;, of { such that
(6) (== Mg ()", ... ™), &, (0,...,0)#0.

Remark 2.6. Note that { and (['! have the same set of characteristic mono-
mials and that Z({) = Z({1). Moreover we have (y-{! = y.¢1 for
y € Aut(Z(()/Z).

The following distance estimates between the conjugates of { and ([ will
be used in the proof of the main theorem.

Proposition 2.7. Let C(tl/", .. ('/" ) € C{tl/", l/"} be a quasi-ordinary
branch, {, € U({, k) and Ck{ e U(,k'). Then for any large ¢ > 0, there
exist positive numbers &), ..., 0, such that for s = (s\,...,5;) € C¢ with
|si] < d;, we have the following inequalities:

(7 ¢(s) — ¢(s) = L (s) — C”]( ) ifk>1,

(8) clf(s) — {(s)] < 1C(s) = G (9| ik <1,

9) el (s) = GO < 1L(s) = L (o) ifk <.

Proof. Let y be an element of Aut(-Z({)/-Z’) such that y-{ = {;, . By Remark
2.6, we also have y- (1 = C,[("_] . We will show each inequality separately.
Proof of (7). Since { —{, = My -¢,,wehave y-f=f for feR;, i<k.
Thus
L, — T =y-(¢ - ¢") (by Remark 2.6)
=y-M;fi=Mf, (since M;f; € R, and / < k)

=¢-¢.
Proof of (8). Since { — {1 = M, f; and { - { = Mg, it is sufficient to
show that for s, ..., s; with sufficiently small |s;|,

c|Mfi(s)| < |Micex,(s)] .
This inequality holds because the analytic function
(cM fi/ Myex,)(s)

vanishes at the origin. Note that Me¢,, divides M; and f; is a nonunit.
Proof of (9). By Remark (2.6), we have

Lo~ =y -y =y-Mf.
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Since the action of y on fractional monomials is given by multiplication of
complex numbers, there is a nonunit element g, such that y-M,f; = M,g.
Hence the same argument as in the above proof works. 0O

For a quasi-ordinary branch (, let
{Gi=C, ...t} (resp. {¢1=010, ., ¢y

be the set of conjugates of { (resp. ¢I] defined as in (5)). For s = (s;, ..., S4)
€ C? and i, we define a line segment C,[,[”(s) by

(10) 4CM(s) = {t¢i(s) + (1 - ()0 < 1 < 13

Corollary 2.8. For s in C? outside the coordinate hyperplanes with sufficiently
small ¥ |si|?, the line segments C,C,m(s), i=1,...,m, do not intersect each
other unless (; = C,[”.

Proof. 1t is enough to show that for a fixed { = (;, the line ZC—[’T(S) does not
intersect with (¢ [”( s). For k > [, this is true because of (7) and the fact that

L(s)—¢(s) # a(C(s) {k,(s)) for any real number a. For k </, the statement
holds by inequalities (8) and (9). O

3. TOPOLOGICAL TYPE AND CHARACTERISTIC MONOMIALS

Definition 3.1. Let (X, x) C (C+!, 0) and (X', x') C (C?*!, 0) be two germs
of analytic sets. Then (X, x) and (X', x’) are said to have the same topological
type if there exist open sets U;, U, ¢ C4*! containing the origin 0 and a
homeomorphism 4: U; — U, such that 4(0) =0 and A( X NU,))=X'NU,.

To state our main result, we set up some notation. Let (X, x) C (C4*!, 0)
(resp. (X', x) C (C4*!, 0)) be the quasi-ordinary singularity given by the pa-
rametrization { (resp. {I/l), and let z|x: (X, x) — (C¥, 0) (resp. m|x : (X', X)
— (C4, 0)) be a quasi-ordinary projection for (X, x) (resp. (X', x)) induced
by the map =n: C%*! — C? projecting (¢,,..., 1%, 2) to (t1,...,t;). Here
we assume ¢ # {[1 by avoiding the trivial case. The following theorem im-
plies our main result, particularly, that the topological type of quasi-ordinary
singularities are determined by their characteristic monomials.

Theorem 3.2. The analytic germs (X , x) C (C4*', 0) and (X', x) C (C4*!, 0)
have the same topological type.

Proof. We set
D,‘={IGC||!|S&'}, J; >0,

D, ..., 0441) =Dy x - x Dgyy,
N,'=D| X"'XDi_l x8D,><D,~+1 X'-'XDd+],
d+1
D! = U N;,  Nf=9D%! - N;,

L=Xn aDd+' and L' = X' noD!.
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By the conic structure lemma of Burghelea and Verona [BV], it is enough to
prove that the pair (9D*!, L) is homeomorphic to (dD?*+!, L’) for suffi-
ciently small d;, ..., dz4; . We will prove this by constructing a smooth vector
field on dD?*! such that the flow lines send L to L’ in a unit time. (We will
regard both L and L’ as the subset of the same space dD4*!.)

By choosing d;, ..., 4 relatively small compared to d,,;, we will assume
that L and L' are contalned in Ng . Let A be the union of coordinate
hyperplanesin C¢ and B = n~!'(A). Note that n|;_g: L-B — T := n(Ng,,)-
A (resp. m|p—p: L'— B — T) is an unbranched covering. Thus for every point
te T—A, the fiber | 5(t) (resp. m|[' z(t)) consists of m := Aut(Z({)/¥L)
distinct points. More precisely, we have

nl g ={(s7, ..., 85, Gilst, oo, s)li=1, ..., m}
and

Al g ={G, ...t s, s))i=1, ..., m)
for some sy, ...,s;, € C. Here ¢, ..., {, (resp. C”] L [”) are conjugates
of ¢ (resp. ¢I1).

Defineamap y: L—B — L'-B by sending p = (s, ..., 5§, {i(s1, ..., 54))
in the fiber 7|7!p(t) to w(p) = (s,....s%, {Msi, ..., 54) in the fiber
7t|Z,'_B(t). This map is independent of the choice of s;,...,s;, since
we have (i(wisi, ..., @g8a) = (¥-8i)(S1, ..., 84), @} =1 for some y €

Aut(Z(¢)/Z#) and (y-{W = {11, Moreover, it is a diffeomorphism because
the map y is continuous and the covering maps n|.—p and =n|;._p are local
diffeomorphisms in the following commutative diagram:

L-B Y- L-

N /L,

Let pw(p) denote the real line segment joining p and w(p) in R24+2 = C4+!,
Note that these lines lie in dD?*! by the assumption that L, L' C N§,,
For sufficiently small d;, ..., d;4;, these lines never intersect each other by
Corollary 2.8. Thus the set

JIL-B,L'-B)= |J pv(p)
pEL-B

is a smooth manifold with boundary in dD?+!. In fact, (L — B) x [0, 1] is
diffeomorphicto J(L—B, L'—B’) viathemap (p, t)— (p, (1-t)p+ty(p)).
Now define a vector field 7" on J(L—- B, L' — B) by

7(q)=w(p)—p whengqgepy(p).

Then the vector field 77 is well defined and smooth. Using a partition of unity,
we can extend 7 to a vector field on dD?*! supported on a proper subset of
aD4t! | Since every vector field with a compact support generates an isotopy
[H, Theorem 1.2, p. 179], we have a homeomorphism of dD?+!  which maps
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L—B to L' —B. By the continuity, this homeomorphism maps L to L’'. This
completes the proof. O
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