A NOTE ON THE NORMAL GENERATION OF AMPLE LINE BUNDLES ON AN ABELIAN SURFACE

AKIRA OHBUCHI

(Communicated by Louis J. Ratliff, Jr.)

ABSTRACT. Let L be an ample line bundle on an abelian surface A. We prove that the four conditions: (1) L is base point free, (2) L is fixed component free, (3) $L^{\otimes 2}$ is very ample, (4) $L^{\otimes 2}$ is normally generated, are equivalent if $(L^2) > 4$. Moreover we prove that $L^{\otimes 2}$ is not normally generated if $(L^2) = 4$.

1. Introduction

Let B be an abelian variety defined over an algebraically closed field, and let M be an ample line bundle on B. The theorem of Lefschetz says that $M^{\otimes n}$ is very ample if $n \geq 3$. If a polarized abelian variety (B, M) is isomorphic to $(B_1 \times B_2, \mathscr{O}(\Theta_1 \times B_2 + B_1 \times D_2))$ where Θ_1 is a principal polarization of B_1 , $\dim(B_1) > 0$, and $\dim(B_2) \geq 0$, then $M^{\otimes 2}$ is not very ample. Therefore the Lefschetz theorem gives a best possible condition for the very ampleness of $M^{\otimes n}$. The above example, however, is the only example for which $M^{\otimes 2}$ is not very ample (see Ohbuchi [3]). The condition that $M^{\otimes n}$ is normally generated is also given (see Koizumi [1], Sasaki [5], Sekiguchi [6-8]) and n=3 is best possible in this case too. As for $M^{\otimes 2}$, if M is base point free then $M^{\otimes 2}$ is normally generated (see Ohbuchi [4]). In this paper we consider the difference between this very ample condition and this normally generated condition. The result is the following:

Theorem. Let L be an ample line bundle on an abelian surface A defined over an algebraically closed field with characteristic 0. If $(L^2) > 4$ then the following conditions are equivalent:

- (1) L is fixed component free,
- (2) L is base point free,
- (3) $L^{\otimes 2}$ is very ample,
- (4) $L^{\otimes 2}$ is normally generated.

If $(L^2) \le 4$ then the above conditions are not equivalent. If $(L^2) = 2$ then $L^{\otimes 2}$ is not very ample, and therefore is not normally generated. In the last part of this paper, we prove that $L^{\otimes 2}$ is not normally generated if $(L^2) = 4$.

Received by the editors February 7, 1991 and, in revised form, May 23, 1991. 1991 Mathematics Subject Classification. Primary 55R25.

2. Proof of the theorem

To prove the above theorem, we prepare several lemmas. Throughout this paper, we assume that L is an ample line bundle on an abelian surface A defined over an algebraically closed field.

Lemma 1. Let B be an abelian variety and M be an ample line bundle on B. $M^{\otimes 2}$ is not very ample if and only if the polarized variety (B, \underline{M}) is isomorphic to $(B_1 \times B_2, \mathcal{O}(D_1 \times B_2 + B_1 \times D_2))$ where B_1 and B_2 are abelian varieties with dim $B_1 > 0$ and D_1 and D_2 are ample divisors with dim $\Gamma(B_1, \mathcal{O}(D_1)) = 1$. Proof. See Ohbuchi [3]. Q.E.D.

Lemma 2. L is fixed component free if and only if $L^{\otimes 2}$ is very ample.

Proof. We may assume that $(L^2) > 2$. We assume that L has a fixed component. Let F be a fixed part of a complete linear system |L|, and put |L| = |M| + F. If $(M^2) > 0$ then M is ample. Moreover, $\underline{L} \simeq \underline{M} \otimes \mathscr{O}(F)$ implies $(L^2) = ((M+F)^2)$. Therefore $(M \cdot F) = (F^2) = 0$. This is a contradiction because M is an ample line bundle. Hence $(M^2) = 0$. Moreover, we can see that $(F^2) = 0$. In fact, we assume that $(F^2) > 0$. In this case, if $x \in K(L) = \{x \in A, T_x^*L \simeq L\}$ then $x \in K(F) = \{x \in A, T_x^*F \text{ is linearly equivalent to } F\} = \{x \in A; T_x^*F = F\}$. By $(F^2) > 0$, the order of $K(F) = (\dim_k \Gamma(A, \mathscr{O}(F)))^2 = 1$. Hence $(L^2) = 2$. This is a contradiction. Therefore (A, L) is isomorphic to $(A_1 \times A_2, \mathscr{O}(D_1 \times A_2 + A_1 \times D_2))$ where $A_1 = A/K^\circ(M)$, $A_2 = A/K^\circ(F)$, $K^\circ(M) =$ the connected component of $K(M) \ni 0$, $K^\circ(F) =$ the connected component of $K(F) \ni 0$, and $K(F) \ni 0$, and $K(F) \ni 0$. Therefore, we obtain this lemma by Lemma 1. Q.E.D.

Lemma 3. Let B be an abelian variety of dimension g, and let M be an ample line bundle whose base points are at most a finite set. If $(M^g) > (g!)^2$ then M is base point free.

Proof. We assume that the set of all base points Bs|M| is not empty. Let $p \in Bs|M|$. We consider the set $K(M) = \{x \in B : T_x^*M \simeq M\}$. By the definition of K(M), $p + K(M) \subset Bs|M|$. Hence $((M^g)/g!)^2 \leq (M^g)$ because the order of K(M) is $((M^g)/g!)^2$. Therefore this lemma is obtained. Q.E.D.

Lemma 4. Let M be a symmetric ample line bundle on a g-dimensional abelian variety B. Let α , $\beta \in B$ (= the dual abelian variety) and let $u \in B$ be an element such that $2u = \alpha - \beta$. Then $\Gamma(B, \underline{M}^2 \otimes \mathscr{P}_{\alpha}) \otimes \Gamma(B, \underline{M}^2 \otimes \mathscr{P}_{B}) \rightarrow \Gamma(B, \underline{M}^4 \otimes \mathscr{P}_{\alpha+\beta})$ is surjective if and only if $\eta+u$ is not contained in $\phi_M(Bs|M|)$ for every $\eta \in B[2] = \{x \in B; 2x = 0\}$ where \mathscr{P} is a Poincaré bundle and $\phi_M \colon B \to B$ is a dual map.

Proof. See Ohbuchi [4]. Q.E.D.

Proof of the theorem. The implications $(2) \rightarrow (1)$ and $(4) \rightarrow (3)$ are obvious. By Lemma 2, the conditions (1) and (3) are equivalent. By Lemma 4, $(2) \rightarrow (4)$ is obtained. By Lemma 3, $(1) \rightarrow (2)$ is obtained if $(L^2) > 4$. Q.E.D.

If $(L^2)=2$ then L is a principal polarization. Therefore $L^{\otimes 2}$ is not very ample, so $L^{\otimes 2}$ is not normally generated. If $(L^2)=4$ then the above equivalence does not hold because L always has base points. But in this case, as for $L^{\otimes 2}$, we can show that $L^{\otimes 2}$ is never normally generated and that $L^{\otimes 2}$ is very ample provided that L is fixed component free. We check this result.

Lemma 5. If $(L^2) = 4$ and L is fixed component free, then a general $C \in |L|$ is smooth.

Proof. By Bertini's theorem (see Zariski [9]), a general member $C \in |L|$ is smooth at $p \in C - Bs|L|$. Let $p \in Bs|L|$. Since $p + K(L) \subset Bs|L|$ and the order of $Bs|L| \le 4$, it follows that Bs|L| is a 4-point set. For every $p \in Bs|L|$, the intersection multiplicity at $p = (L \cdot C)_p \ge 1$. Hence C is smooth at $p \in Bs|L|$ because $(C^2) = 4$. Q.E.D.

Lemma 6. $L^{\otimes 2}$ is not normally generated.

Proof. We may assume that L is fixed component free. We also assume that $Bs|L|\ni 0$. As K(L)=Bs|L|, Bs|L| is contained in A[2]. Let C be a smooth member of |L|. Let $\iota\colon A\to A$ be a morphism defined by $\iota(x)=-x$. In this case we obtain that $\iota^*C=C$. Because the condition $\iota^*C\neq C$ implies that C and ι^*C have a same tangent direction at every $p\in Bs|L|$, it follows that $(d\iota)_p\colon T_p(A)\to T_p(A)$ is multiplication by -1. Therefore $(C\cdot \iota^*C)_p\geq 2$. This is a contradiction. Hence C is a symmetric divisor on A. By Lemma 4, we obtain this lemma. Q.E.D.

REFERENCES

- S. Koizumi, Theta relations and projective normality of abelian varieties, Amer. J. Math. 98 (1976), 868-889.
- 2. D. Mumford, Abelian varieties, Oxford Univ. Press, New York, 1970.
- 3. A. Ohbuchi, Some remarks on ample line bundles on abelian varieties, Manuscripta Math. 57 (1987), 225-238.
- 4. ____, A note on the normal generation of ample line bundles on abelian varieties, Proc. Japan Acad. Ser. A Math. Sci. 64 (1988), 119-120.
- 5. R. Sasaki, *Theta relations and their applications in abstract geometry*, Sci. Rep. Tokyo Kyoiku Daigaku 381 (1977), 138-160.
- 6. T. Sekiguchi, On projective normality of abelian varieties, J. Math. Soc. Japan 28 (1976), 307-322.
- 7. ____, On projective normality of abelian varieties. II, J. Math. Soc. Japan 29 (1977), 709-727.
- 8. ____, On the cubics defining abelian varieties, J. Math. Soc. Japan 30 (1977), 703-721.
- 9. O. Zariski, Introduction to the problem of minimal models in the theory of algebraic surfaces, Math. Soc. Japan (1958).

DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATION, YAMAGUCHI UNIVERSITY, YAMAGUCHI-SHI, YAMAGUCHI 753, JAPAN