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Abstract. We prove that the separating ideal S(D) of any derivation D on a

commutative unital algebra B is nilpotent if and only if S(D) n (f) R") is a nil

ideal, where R is the Jacobson radical of B . Also we show that any derivation

D on a commutative unital semiprime Banach algebra B is continuous if and

only if f)(S(D))" = {0} . Further we show that the set of all nilpotent elements

of S(D) is equal to (~){S(D)nP), where the intersection runs over all nonclosed

prime ideals of B not containing S{D). As a consequence, we show that if a

commutative unital Banach algebra has only countably many nonclosed prime

ideals then the separating ideal of a derivation is nilpotent.

1. Introduction

In [9] Singer and Wermer proved that the range of a continuous derivation

on a commutative Banach algebra is contained in the Jacobson radical. In the

same paper they conjectured that the assumption of continuity is not necessary.

In [10] Thomas proved the Singer-Wermer conjecture. Still, the answers to the

following problems seem to be open.

(Ql) Is the separating ideal of a derivation on a commutative unital Banach

algebra nilpotent?
(Q2) Are derivations continuous on a commutative unital semiprime Banach

algebra?
(Q3) Are derivations continuous on integral domains?

It is straightforward to notice that the above questions are equivalent (see

Proposition 2.4). That is, an affirmative answer to one of them leads to an
affirmative answer to the others. In this paper we prove that for any derivation

D on a commutative unital Banach algebra, the separating S(D) of D is nilpo-

tent if and only if (S(D) n (fl^i R")) is a nn ideal. Also we show that for any

derivation D on a commutative unital semiprime Banach algebra, D is con-

tinuous if and only if r\™=i(S(D))" - {0} , where S(D) is the separating ideal

of D. Further we show that in any commutative unital Banach algebra, the set

of nilpotent elements of the separating ideal S(D) of a derivation D is equal
to f](S(D) n P), where the intersection is taken over all nonclosed prime ideals
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P of B not containing S(D). As a corollary, we prove that S(D) is nilpotent

if the Banach algebra has only countably many nonclosed prime ideals.

Throughout the following we suppose that B is a commutative unital Banach

algebra. R and N will denote, respectively, the Jacobson and nil radicals of B .

N is also called the prime radical of B and consists of all nilpotent elements

of B. N is also equal to the intersection of all prime ideals of B. Recall

that B is said to be an integral domain if {0} is a prime ideal. B is said
to be semiprime if it has no nonzero nilpotent elements. For any derivation

D on a commutative unital Banach algebra B, let S(D) = {x £ B: there is
x„ —► 0 with Dxn -> x} be the separating ideal of B. It is easy to see that

S(D) is a closed ideal of B , and by the closed graph theorem it follows that D

is continuous on B if and only if S(D) = {0}. For any ideal /, let

(I:D) = {xeI: Dn(x) g / for each n > 1}.

For any prime ideal P of B it is easy to verify that (P : D) is also a prime

ideal. An ideal I of B is said to be nil if each element of / is nilpotent. If I

is an ideal of B, let /" denote the ideal of B that is the linear span of «-fold

products of elements of I. An ideal I of B is said to be nilpotent if /" — {0}

for some positive integer n . It is known that every closed nil ideal is nilpotent

[6].

2. Preliminaries

Lemma 2.1. Suppose B is a commutative Banach algebra that is also an integral

domain. Further suppose that there exists a sequence of nonzero ideals {/„ , n >

1} such that fl^Li h = {0}. Then every derivation on B is continuous.

Proof. Suppose the result is false. Since B is an integral domain, by Remark

3.1 of [5], we may assume that there exists a discontinuous derivation D such

that S(D) is the smallest nonzero closed ideal of B. Let {In,n > 1} be

a sequence of nonzero ideals in B such that f|^=i Jn — W • Since B is an

integral domain, I„C\S(D) (which contains InS(D)) is a nonzero ideal for each

n . Since S(D) is the smallest closed ideal of B , /„ n S(D) is dense in S(D)

for each n . Let J„ = Inn S(D) for each n > 1 . Obviously, f|^i h = {0}.
For the remainder of the proof, the argument is similar to the proof of Propo-

sition 3.1 of [4]. Let x be a nonzero element in S(D) such that ||x|| = 1 . Since

xJn = S(D) for each n > 1, there exists a sequence {t„} (with 0 ^ tn £ Jn)

such that \\txx - x\\ < 4~x and

\\tnx-x\\ < 4""(1 + \\tx\\rx ---(l + ||fn_,||)-'    for all n > 2.

Put, for each k > 1, n > k , ck t „ = tk ■ ■ • t„x. Then for each k > 1, n > k ,

\\Ck,n ~ Ck + l,n\\ < \\tk ■■■t„\\ ||X - Xtn+X\\ < 4""-'.

So the sequence is Cauchy and hence convergent. Let sk = lim„^oo ckn- Since

ck,n = tkCk+i,n for n > k + 1 , we have sk = tksk+x . Hence sx £ CC=X Jn ■

Since fl^li Jn = {0}, it follows that sx = 0.
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Since £r=i(c*+i,1 -ckA) + ci.i = 0, we have

oo

IMI = II ~X\\ =    Ci,j +Y^(Ck+l,l ~Ck,\)-X
k=\

oo

< He,,! -X|| + ^||Cjt+l,l -Ct.lll

oo

< 4_1 +5Z4-*"1 < 1.
fc=i

This is a contradiction to the fact that ||x|| = 1.   Q.E.D.

Lemma 2.2. Let D be a derivation on a commutative unital Banach algebra B

such that the separating ideal S(D) of D is not nilpotent. Then there exists a

closed prime ideal P satisfying

(i)   P = (P : D), i.e., P is invariant under D.

(ii)   P does not contain either the Jacobson radical R or S(D).

Remark 2.3. By Thomas's theorem [10], since D(B) is contained in R, it

clearly follows that S(D) is contained in R. In the following proof of the

above lemma we offer arguments without invoking such a powerful result.

Proof of Lemma 2.2. Since S(D) is not nilpotent by Theorem 2.5 of [1], there

exists finitely many minimal prime ideals not containing S(D) such that 5(D) n

N = Px n P2 n • • • n Pk n S(D), where N is the nil radical of B . Suppose R is
contained in F, for each i. Then Rf)S(D) is contained in TV. Since RflS(D)

is a closed ideal, RnS(D) is a nilpotent ideal (see [6]). Hence by Lemma 2.1 of

[5], S(D) is a nilpotent ideal. This is false. Hence there exists a minimal prime

ideal say P, which does not contain either R or S(D). Since (P : D) is also a

prime ideal contained in P and P being minimal, it follows that P = (P : D).
This completes the proof of the lemma.

Proposition 2.4. The following statements are equivalent:

(i)  The separating ideal of a derivation on a commutative unital Banach

algebra is always nilpotent.

(ii) Derivations are continuous on commutative unital semiprime Banach

algebras.
(iii) Derivations are continuous on commutative unital Banach algebras that

are integral domains.

Proof. For the equivalence of (ii) and (iii) refer to Theorem 3.1 of [5]. Ob-

viously (i) implies (ii). Suppose (ii) is true and (i) is false. Let B be a com-

mutative Banach algebra and D: B —> B be a derivation such that 5(D) is

not nilpotent. Then by Lemma 2.2 there is a closed prime ideal P invari-

ant under D and not containing 5(D). Hence 8: B/P —> B/P, defined by

d(x + P) = D(x) + P, is a well-defined derivation. Since P is a closed prime

ideal, B/P is an integral domain. Since every integral domain is semiprime, by

our supposition 3 is continuous on B/P . That is, the separating ideal S(S) of
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d is the zero ideal in B/P. This implies that 5(D) is contained in P, which

is a contradiction. This completes the proof of the proposition.

3. Main results

Thomas's theorem [10] implies that the separating ideal of a derivation is

contained in the Jacobson radical of the algebra. Hence, if the Jacobson radical

is nilpotent then so is the separating ideal of a derivation on the algebra. In

[2] Dales constructed a Banach algebra with nilpotent Jacobson radical and a

discontinuous derivation using a divisible submodule that is contained in the

Jacobson radical (especially, refer to [2, Lemmas 1 and 5 and proof of Theorem

2 in §3]). Also the known examples of discontinuous derivations that map

the algebra into a nil divisible ideal contained in f|^=i R" > where R is the

Jacobson radical of the algebra, have nilpotent separating ideals (refer to [8,

§8]; in particular, Example 8.8, Theorem 8.9, and Remark 8.9). This is not a

coincidence as we show in the following that the separating ideal of a derivation

is nilpotent if it intersects f|~ , R" in a nil ideal.

Theorem 3.1. Let R be the Jacobson radical of the commutative unital Banach

algebra B. Let D be any derivation on B. Then the separating ideal S(D) is

nilpotent if and only if (5(D) n (f]^Lx Rn)) is a nil ideal.

Proof. Let N be the nil radical of B. One way implication is obvious, so

suppose that (S(D) n (f|~ . R")) is a nil ideal and S(D) is not nilpotent. By
Cusack's theorem [1, Theorem 2.5] there are finitely many closed prime ideals

Px, P2, ... , Pk of B that are minimal and do not contain S(D) such that

S(D) n N = 5(D) n Pi n P2 n ■ • ■ n Pk.

Since each P, is closed, S(D) n N is closed. Let x be an element of S(D)

that is not nilpotent. Standard automatic continuity theory shows that there is

a positive integer m = m(x) such that for each n > m, xnS(D) = xmS(D).

The Mittag-Leffler theorem implies that f|£Li xnS(D) is dense in xmS(D). It

is also clear that xnS(D) C R" and that xnS(D) C S(D) for each n > 1.

Therefore we see that

f| xnS(D) C [5(D) n ( f) R" j J C S(D) n N.

Since rC=\x"S(D) is dense in xmS(D) and 5(D) nN is closed, it follows that
xmS(D) C S(D)nN. Therefore we see that xmS(D) C Pt for i = 1,2,..., k.
But each P, is a prime ideal not containing S(D). This forces x to be in each

P, and, therefore, x G S(D) n N. This implies x is nilpotent, which is a

contradiction.   Q.E.D.

Theorem 3.2. Let D be a derivation on a commutative unital semiprime Banach

algebra B. Then D is continuous if and only if [X?=x(S(D))n = M •

Proof. One implication is obvious, so suppose that P^=x(S(D))n = {0}. Let

x be any element of 5(D). Standard automatic continuity theory again shows
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that there is positive integer m = m(x) such that for each n > m , x"S(D) =

xmS(D). The Mittag-Leffler theorem implies that ()™=l xnS(D) is dense in

xmS(D). Since xnS(D) C (5(D))n+1 for each n > 1 , we see that

OO CO

f|x"5(D)cf|(5(D)r+1 = {0}.
n=\ n=\

The only valid conclusion is that xmS(D) = {0} and, in particular, xm+x = 0.

Since B is assumed to be semiprime, this forces x = 0. Since x was arbitrary

in S(D), we have shown that S(D) = {0}, and this ends the proof of the
theorem.

As mentioned in the proof of Lemma 2.2 and elsewhere, in [1] Cusack showed

that for any derivation D on B , there exists finitely many minimal prime ideals,

say Pi, P2, ... , Pk not containing 5(D) such that S(D)nJV = S(D)nPi n- • -n
Pk , where TV is the nil radical of B. Also in the same paper it is noted that
all these P, 's are closed. In the following, we prove a similar result involving
nonclosed prime ideals of B.

Theorem 3.3. Let S(D) be the separating ideal of a derivation D on B. Let N

be the nil radical of B. Then S(D) niV = f)(S(D) n P), where the intersection
on the right-hand side of the equality runs over all nonclosed prime ideals P of
B not containing S(D).

Proof. Let J = f|(5(D) n P), where the intersection is taken over all nonclosed
prime ideals P of B. Since N is the intersection of all prime ideals of B,
obviously S(D) n N is contained in J. Suppose S(D) n N ^ /. Let x be

a nonzero element of / that is not nilpotent. Since S(D) is contained in the

Jacobson radical R (by Thomas's theorem [10]) x £ R. By [7, Theorem 2.2,

p. 378], there exists a prime ideal Q that is maximal in the set of all ideals
of B that are disjoint from the set 5 — {xn, n > 1}. Since x is in every
nonclosed prime ideal of B, (Q: D) is a prime ideal contained in Q, and it
follows that (Q: D) is a closed prime ideal of B.

Claim 1. f}n^=x(x") is contained in (Q : D), where (x") is the principal ideal
generated by x" .

Proof of Claim 1. Since (X?=l(xn) is invariant under D, if the claim is false

then it is not contained in Q. Then Q + (xn) is an ideal that contains Q

properly. By our selection of Q, 5 D (Q + (X?=i(x")) *s not empty. That is,

there is an integer m > 1 such that xm belongs to Q + fXtL^x"). This implies

that there is an element t in B such that (xm - txm+x) belongs to Q. Since

Q is a prime ideal not containing x, it follows that (1 - tx) belongs to Q.

This is false because (1 - tx) is a unit. Hence our claim is established.

If (Q : D) = {0} then B is an integral domain. Also by Claim 1, iXLx(xn) =
{0} . Hence by Lemma 2.1, it follows that D is continuous. Therefore S(D) =
{0} and the theorem follows immediately. Thus we may assume that (Q : D)
is a nonzero ideal.
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Since (Q : D) is a closed ideal invariant under D, d: B/(Q : D)

-♦ B/(Q : D) defined by d(x + (Q : D)) = D(x) + (Q : D) is a well-defined
derivation. Since (Q : D) is a prime ideal, B/(Q : D) is an integral domain.

Let

In = («2 : D) + (xn))j(Q : D)    for each n > 1.

Since x does not belong to (Q : D), /„ is a nonzero ideal in B/(Q : D) for
each n .

We now show that |XLi h = {0} in B/(Q : D). Let t + (Q : D) £ f|~ , /„ .
For each n > 1, there exists a c„ G P> and qn £ (Q: D) such that

(*) / = C„X" + ^.

It is enough to show that t £ (Q: D).

Claim 2.  t£Q.

Proof of Claim 2. Suppose it is not true. Since Q is properly contained in

Q + (t), where (t) is the principal ideal generated by t. By the selection of

Q, (Q + (t)) n 5 7^ 0. That is, there exists a positive integer m such that
xm £ (Q + (t)). This implies for some c in B and q in Q that xm = ct + q .

Since / is also equal to cm+xxm+x + qm+x , we have

xm = c(cm+[xm+x +qm+x) + q.

Hence,

xm(\ - ccm+xx) = (cqm+[ +q)£Q.

Since Q is a prime ideal and x does not belong to Q, it follows that 1 -ccm+xx

belongs to Q. Since x is in the Jacobson radical, 1 - ccm+ix is a unit. This

is a contradiction. Hence t £ Q.

Claim 3.  Dn(t) £ Q for each n > 1 .

Proof of Claim 3. Fix an integer « > 1 . We show that Dn(t) belongs to Q.

Suppose it is not true. Since Q + (D"(t)) properly contains Q, where (D"(t))

is the principal ideal generated by D"(t), there exists positive integer k such

that xk belongs to (Q + (D"(t))). That is, there is q in Q and c in B such

that xk - q + cD"(t). Now select a positive integer i large enough so that

D"(CiX') = bxk+x for some ieB.

Since by (*)   t = CjX' + qt, we have

xk = q + cD"(t) = q + cD"(c,xl + q,)

= q + cD"(Clx') + cD"(q,) = q + bxk+x + cDn(qi).

Hence,

xk(l -bx) = q + cDn(qj).

Since <?, G (Q : D), it follows that Dn(qj) g Q. Therefore, by the above

equation, it follows that xk(\ - bx) £ Q. Since x is in the Jacobson radical
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of B , (\-bx) is a unit. Since Q is a prime ideal, this implies x £ Q, which

is false. This completes the proof of the claim.

Therefore it follows from Claims 2 and 3 that / belongs to (Q : D). Hence

f)™=lI„ = {0} in B/(Q : D). Hence by Lemma 2.1, it follows that d is a
continuous derivation on B/(Q : D). Hence S(d), the separating ideal of d ,

is zero in B/(Q : D). This implies S(D) is contained in (Q : D), and hence,

in particular, S(D) is contained in Q. Since x £ S(D), we get that x £ Q.

This is a contradiction to the selection of Q.   Q.E.D.

For any commutative Banach algebra B, let &" — 3s'(B) be the set of

all nonclosed prime ideals of B . In [5, Theorem 3.2] we showed that if 3s' is

empty for a commutative unital semiprime Banach algebra then every derivation

on the algebra is continuous. In the following we show that if the cardinality

of J?2" is countable, then the separating ideal of every derivation on the algebra

(not necessarily semiprime) is nilpotent. As a consequence, it follows that if £P'
is empty then the separating ideal of every derivation on the algebra is nilpotent.

An example of nonsemisimple Banach algebra with &" being empty is a power

series algebra

{oo oo "^

a = s£janX": \\a\\ = ]£|a„|eo„ < oo I

n=0 n=0 J

in one indeterminate X with complex coefficients where {con: n = 0, 1,2,...}

is a sequence in (0, oo) such that ton = 1, <y„+m < co„o)m , and lim(o;„)1/'" = 0

(refer to [3, p. 145]). In fact, K has a unique maximal ideal (say) M =

{£^=oan^": ao = 0} . If {co„} is chosen properly, then the only prime ideals

of K are {0} and M. Finally, it is interesting to find some nontrivial examples

of Banach algebras with cardinality of J3' being countable.

Theorem 3.4. Suppose B is a commutative unital Banach algebra with only

countably many nonclosed prime ideals. Then the separating ideal of any deriva-

tion on B is nilpotent.

Proof. Suppose S(D) is not nilpotent. By Theorem 2.5 of [1] we have 5(D) n
A^ = S(D) n Px n P2 n • • • n P„ , where P, 's are minimal prime ideals of B not

containing S(D) and N is the nil radical of B . Also, the P, 's are closed. Let

P = Px. Since P is a closed ideal invariant under D, D lifts to a derivation d

of B/P. Since B has only countably many nonclosed prime ideals and there

is a one-to-one correspondence between the prime ideals of B containing P

and the prime ideals of B/P, it follows that B/P has only countably many
nonclosed prime ideals. Let {/«>«>!} be the sequence of all nonclosed prime

ideals of B/P. Since B/P is an integral domain, by Theorem 3.3 it follows

that (XLx(S(d) n /„) = {0} in B/P. Hence by Lemma 2.1, it follows that d
is continuous on B/P. This implies that 5(D) is contained in P. This is a

contradiction that completes the proof of the theorem.

Corollary 3.5. If every prime ideal is closed in B then 5(D) is nilpotent.



174 r. v. garimella

Acknowledgment

I am very grateful to the referee for his valuable comments, suggestions in im-

proving some of the proofs and considerably simplifying the proof of Theorem

3.2 and allowing me to use his proof of Theorem 3.1.

References

1. J. Cusack, Automatic continuity and topological^ simple radical Banach algebras, J. London

Math. Soc. (2) 21 (1977), 493-500.

2. H. G. Dales, The uniqueness of the functional calculus, Proc. London Math. Soc. 3 (1973),

638-648.

3. _, Automatic continuity: A survey, Bull. London Math. Soc. 10 (1978), 129-183.

4. J. Esterle, Elements for a classification of commutative radical Banach algebras, Proc. Long

Beach, 1981, Lecture Notes in Math., vol. 975, Springer-Verlag, Berlin and New York,

1983, pp. 4-65.

5. R. Garimella, Continuity of derivations on some semiprime Banach algebras, Proc. Amer.

Math. Soc. 99(1987), 289-292.

6. S. Grabiner, The nilpotency of Banach nil ideals, Proc. Amer. Math. Soc. 21 (1969), 510.

7. T. W. Hungerford, Algebra, 3rd printing, Springer-Verlag, New York, 1984.

8. A. M. Sinclair, Automatic continuity of linear operators, London Math. Soc. Lecture Notes

Ser., vol. 21, Cambridge Univ. Press, Cambridge, 1976.

9. I. M. Singer and J. Wermer, Derivatives on commutative normed algebras, Math. Ann. 129

(1955), 260-264.

10. M. P. Thomas, The image of a derivation is contained in the radical, Ann. of Math. (2) 128

(1988), 435-460.

Department of Mathematics and Statistics, Northwest Missouri State University,

Maryville, Missouri 64468

E-mail address: 0100142@VAXC.Northwest.Missouri.edu


