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Abstract. We prove that there exist monic polynomials / over GF(q) for

which / + g is reducible for all g € GF(g)[x] with small degree. This is

the analogue for polynomials of a result of Erdos and Rankin concerning gaps

between consecutive primes.

1. Introduction

Many of the classical results on the distribution of prime numbers have ana-

logues that describe the distribution of irreducible polynomials over a finite field

GF(q). For example, the analogue of the prime number theorem is the state-

ment that if I(n) is the number of monic irreducible polynomials of degree

n over GF(q), then I(n) ~ q"/n as n —> oo (throughout this paper we shall

regard q as fixed and implicit constants may depend on q). This statement is

in fact much easier to prove than the prime number theorem since it follows in>

mediately from the explicit formula I(n) = n~x Y*d\nlJL(d)qnld (see Knuth [4,

Exercise 4.6.2.4]). Another example of a result in the distribution of prime

numbers that has an analogue for polynomials is the prime number theorem for

arithmetic progressions. The analogue of this result was proved by Artin in his

dissertation [1].
It is well known that the Riemann hypothesis implies that for every integer n

there exists a prime p such that p = n + <9(n1/,2ln2 n) (throughout this paper,

we shall use In to denote the natural logarithm, and log to denote the logarithm

to the base q). This result has the following natural analogue for polynomials,

which follows immediately from a result of Rhin [8, Theoreme 4, p. 65].

Theorem (Rhin). Let f e G¥(q)[x] be monic of degree n and 1 < m < n.

Then the number of monic irreducible polynomials g with deg(/- g) < m is

qm/n + 0(nq"/2).

From this we may immediately deduce the following.
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Corollary. If n is sufficiently large and m > n/2, then for every monic polyno-

mial f of degree n, there exists an irreducible polynomial g of degree n such

that deg(/ - g) < m.

In this paper we shall prove a result in the opposite direction from this

coi ? lary. The result that we prove is in fact a direct analogue of a result of

Rankin [7], who refined a method of Erdos to prove that there exist infinitely

many integers n such that for all primes p,

,   ,     In In In In n
\n - p\> c In n In In n,.  .   ,—r^ ,

(In In In n)2

where c is a constant. Our result is the following

Theorem. For every e > 0, there exist infinitely many integers n and polynomi-

als f e GF(q)[x] of degree n such that f+g is reducible for all g e GF(q)[x]

with

(1)      deg(g) < logn + loglog« - 21ogloglog« + (1 - e) log log log log n.

The method of proof for this result is an adaptation of the method of Erdos

and Rankin to polynomials.

It is natural to ask how close to best possible our result is. In this regard

we may construct a "balls into buckets" heuristic model to form a conjecture,

similar to the way that Cramer did for gaps between consecutive primes. Let us

define an equivalence relation on the set of monic polynomials of degree n over

GF(q) by / = g if and only if deg(/ - g) < m . The question that we wish
to address is how large m needs to be in order for all of the q"~m equivalence

classes to contain an irreducible. We might expect that the I(n) irreducibles

of degree « are randomly distributed among the equivalence classes, and if
this were the case, then a well-known probability result concerning the coupon

collector's problem (see [3, pp. 234, 239]) suggests that all of the classes will be

nonempty if 1(h) > (1 + s)qn~m \n(q"~m). This will occur if m > (2 + e)log«

and n is sufficiently large, and we are therefore led to the following

Conjecture. For any e > 0, all n > «o(c) > and any monic f of degree n,

there exists a polynomial g of degree at most (2 + e) logrc such that f+g is

irreducible.

This suggests that our theorem may be close to best possible. We note in pass-

ing that a similar but somewhat less precise conjecture was made previously by

Coppersmith [2], who argued that for all n we should be able to find a poly-

nomial g of degree 6>(log2«) such that x" + g(x) is irreducible over GF(2).

Such irreducible polynomials are useful for calculating discrete logarithms in

GF(2").

2. An elementary estimate

In the proof of our result we shall employ the following elementary estimate.

Lemma. Let N(k, m) denote the number of monic polynomials of degree k

over GF(q) all of whose irreducible factors have degree at most m.   Then for
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every e > 0 there exists a constant c such that

(2) Y^ N(k, m) < q" exp f-In —+ — +clnm),
■^ \   m     m     m >
k<n

uniformly for n > m > (1 + e) log n.

Much sharper estimates than (2) have been proved by Odlyzko [6] and

Lovorn [5] using the saddle point method, but our proof is much simpler and

covers a wider range of values of m relative to n .

The proof of the lemma is similar in spirit to a method used by Rankin [7]

to estimate y/(x, y), which is the number of positive integers < x all of whose

prime factors are < y . The essential difference lies in the fact that Rankin used

a Dirichlet series generating function, whereas we use the identity

(3) 5>(£,m)z* = n(l-^T      '
A:=0 k=\

which was also the starting point of Odlyzko in his application of the saddle

point method.

Proof. We begin by remarking that the result is trivial if m < n < em , so that

we may henceforth assume that n >em . For 0 < z < 1 we have

(4) ]T/V(/c,m) < Y,<ik + Z~n   Yl   N(k,m)zk
k<n k<m m<k<n

OO

<&qm + z-n^N{k,m)zk.

k=0

We now choose z = q~1(n/m)i/m and use the estimate

(oo \ m m    ,      ^k

£ N(k, m)zk   = £ -/(*) ln(l - zk) « £ «£L

k=0 J        k=l k=l

Note that

(q z)m ln(« Im)      , n
< In m + ^—^-   '       < In m + —.

m(qz - 1) m

It now suffices to show that in the indicated range,

qm < q" exp-In — + — ).
V   m     m     m)

We let n = mqam , and note that it suffices to prove that

(5) win q < (1 -a)mqam In q + cqam ,

for 0 < a < 1. It is however easy to verify that the quantity on the right side

of (5) is increasing in a if c > 1 and 0 < a < 1. Hence the result follows.
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3. Proof of the theorem

Let a and B be positive constants, w > q, and define

u = w + log w - 2 log log w + p log log log w ,

z = w - 1 ,

w log log w
y =--—-—.

alogu;

We shall "sieve" the set S of monic polynomials of degree < u by the irre-

ducibles of degree < w , removing for each irreducible exactly one residue class

modulo that irreducible. We begin by eliminating from S the polynomials that

are divisible by an irreducible of degree between y and z. Any polynomial

that remains in S either has all its irreducible factors of degree at most y or is

divisible by a single irreducible of degree > w . Hence the number of survivors

in S after this sieving is at most

£     N(n,y)+    £       £    1 «£#(«,>>)+   Y,   '(£)«"-*
n<U /irreducible    g=0   mod / n<U W<k<U

tw<deg(/)<M     deg(g)<u

«<?"exp( --ln- + — +c\ny ) +quln(—)
V y   y    y )        KwJ

„       (   u.   u     cu       .     \     qulogw
«^"exp   —ln- + — + clny   +-— ,V y   y    y J      w

by the lemma.
We next sieve by the irreducibles of degree < y using a greedy method.

Proceeding through the irreducibles p of degree < y in some order of nonde-

creasing degree, we remove the residue class modulo p that contains the largest

number of survivors. If p has degree d and there are currently N survivors,

then by the pigeonhole principle there must be a residue class containing at least

Nq~d polynomials. Hence after sieving by the polynomials of degree < y, the

number of survivors will be reduced at least by the multiplicative factor

IK1-*-')  •
d<y

Note that

In (n(l-4-VW)) =£/(</)Intl-cr")
\d<y J       d<y

<22{T+0{ST-)){-q~d+0{q~2d))

= -21^ + 0^ = -lny + 0^-
d<y
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Hence the number of survivors after sieving by all polynomials of degree < z

is

1 / „       .   u,   u     cu qulogw\
(6) «-U"exp(—ln-H--r-clny +-—   .

y \ y   y    y w    J

Note that for fixed a,

u In io
— ̂  ex-
y       In In w

as w —> oo. Hence

(7) —ln-H-\-clny ~ (c - a)\nw ,
y   y    y

and it follows that if we choose a > c + 2, then for w sufficiently large, the

quantity on the left of (7) will be < -2 In it;. With this choice of a it is then
easy to see that the quantity (6) is

qw (log log w)P-1

w

Since the number of irreducibles is asymptotically qw/w, it follows that for

P < 1 and w sufficiently large, the number of survivors is less than the number

of irreducibles of degree w . We can therefore sieve by the irreducibles of degree

w , eliminating one survivor for each such irreducible, and in so doing eliminate

all survivors.

We have now shown that it is possible to choose one residue class ap for each

irreducible p of degree at most w in such a way that each of the polynomials

g with deg(g) < u satisfies at least one of the congruences g = ap mod p . By

the Chinese Remainder Theorem, this is equivalent to constructing

a mod p

deg{p)<w
p irreducible

such that for all g with deg(g) < u, a + g will be divisible by at least one

irreducible of degree < w . Moreover, we may take a to have degree at most

de8 n p=Yiu^«iw.
deg(/>)<u> k<w

p irreducible

so that log(deg(a)) < w + 0(1), and the result follows.

Acknowledgment

The author wishes to express thanks to Dan Gordon for suggestions that

improved the exposition of this paper and to D. Hayes for informing me of

reference [8].

References

1. E. Artin, Quadratische Korper im Gebiet der hbhern Kongruenzen. I, II, Math. Z. 19 (1924),

153-246; Complete papers of Emil Artin, Addison-Wesley, Reading, MA, 1965, pp. 1-156.



16 K. S. MCCURLEY

2. D. Coppersmith, Fast evaluation of discrete logarithms infields of characteristic two, IEEE
Trans. Inform. Theory 30 (1984), 587-594.

3. William Feller, An introduction to probability theory and its applications, vol. I, third ed.,

Wiley, New York, 1970.

4. D. E. Knuth, The art of computer programming, Vol. 2: Seminumerical algorithms, 2nd ed.,

Addison-Wesley, Reading, MA, 1981.

5. Renet Lovorn, Ph.D. Dissertation, Dept. of Math., Univ. of Georgia, in preparation.

6. A. M. Odlyzko, Discrete logarithms in finite fields and their cryptographic significance,

Advances in Cryptology (Proc. of Eurocrypt 1984), Lecture Notes in Computer Science,

vol. 209, Springer-Verlag, New York, 1985, pp. 224-314.

7. R. A. Rankin, The difference between consecutive prime numbers, Proc. London Math. Soc.

13(1938), 242-247.

8. Georges Rhin, Repartition modulo 1 dans un corps de series formelles sur un corps fini,

Dissertationes Math. (Rozprawy Mat.) 95 (1972).

Division 1423, Sandia National Laboratories, Albuquerque, New Mexico 87185


