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Abstract. For a pair of metrizable spaces X and Y , we investigate conditions

under which there is a dense embedding h: X —> Z , where Z is completely

metrizable and Z\h(X) is homeomorphic to Y . In such a case, Z is called a

topological completion of X and Y is called a completion remainder of X .

In case X and Y are completely metrizable, we give necessary and sufficient

conditions that Y be a completion remainder of X . We characterize the com-

pletion remainders of R and those of the rationals, Q . We also characterize

the remainders of Q(k) , a nonseparable analogue of Q .

1. Introduction

Wilanski [4] asked whether there is a 3-point completion of the reals, i.e., is

there a dense embedding h of R into a Polish space Z such that |Z\/?(R)| =

3 ? More generally, one might ask under what conditions on metrizable spaces X

and Y does there exist a homeomorphism h of X into a completely metrizable

space Z such that h(X) is dense in Z and Z\h(X) is homeomorphic to Y.

In such a case, Z is called a topological completion of X and Y is called a

completion remainder of X. In case h(X) is open in Z , 7 is called a closed

completion remainder of X. Throughout, if X is a space, d(X), w(X), and

e(X) denote, respectively, the density, weight, and extent of X and ldp(x)

denotes the local density at p of X :

d(X) = co + inf{\M\ : M is dense in X};
w(X) = co + inf{|.^| : & is a basis for X};

e(X) = co + sup{|/)| : D is a closed, discrete set in X};

ldp(X) — co + inf{\D\ : D is dense in some open U in X, p £ U}.

For metrizable spaces, d(X) = w(X) = e(X). This and other relevant proper-

ties are to be found in Engelking [1].

In §2 we characterize those pairs (X, Y) of completely metrizable spaces

such that Y is a closed completion remainder of X and those pairs such that

Y is a completion remainder of X. Section 3 provides a characterization

of the completion remainders of Q, the rationals, and gives both necessary

and sufficient conditions (neither being necessary and sufficient) for a space to
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be a completion remainder of P, the irrationals. Section 4 studies completion

remainders of nonseparable analogs Q(/c) and P(k) of Q and P. We conclude

in §5 with two open questions.

2. The completely metrizable case

It is easy to see that if X and Y are metrizable and Y is a completion

remainder of X, then d(Y) < d(X) and that if Y is nonempty then X is

not compact. Whether or not e(X) is achieved, that is, whether there exists

a closed discrete set in X whose cardinality is e(X), plays an important role.

Note that, for metrizable spaces X, if e(X) is not achieved then e(X) has

countable cofinality. We begin with an example.

Example 1. A completely metrizable space Z = XuY, where X n Y = 0, X
is dense in Z , and there is no closed discrete set in X of cardinality d(Y).

Consider a hedgehog H, centered at a point cf, where H = (ji<w //, and each

Hi has N, spines of length 1. That is, //, = {cf} U Ua6a,((0> *] x W)» where

A, is an indexing set of cardinality N,.  Take A, nA; = 0 for i ^ j.  Let

H[ = WUU6A,((0, 2~'] x W);let z = U<w^; let Y = {(2-', A) : /< a>,
A € A,} ; and let X = Z\Y. Note that Y is a discrete space of cardinality N<y

but every discrete subset of X of cardinality K^ has cf as a limit point.

This example motivates the following useful lemma.

Lemma 1. Suppose X is a metrizable space and e(X) is not achieved. Then

there exists a point x of X such that ldx(X) = e(X). Moreover, the set of all

such points is compact.

Proof. Assume that e(X) is not achieved. Let a_i =0. Let {a„ : n < co] bean

increasing sequence of cardinals whose sum is e(X). Suppose ldp(X) < e(X)

for all p £ X. There is a minimal, locally finite open cover % of X such
that for all U £ W, d(U) < e(X). Then |^| < e(X). If there is a cardinal

a < e(X) such that d(U) <a for all U £ &, then d(X) <a-\W\< e(X),
which is impossible. For each n < co there is a Un £ %/ such that d(U„) >a„.

Since d(U„) = d(U„) = e(Un), there is a closed discrete set Dn in U„ such

that \D„\ > a„_! . Then D = \Jn€wL>n is closed and discrete and has cardinality

e(X), a contradiction.

Next, assume that there is an infinite closed and discrete set A = {a„ : n < co}

such that lda(X) = e(X) for every a £ A. There is a discrete collection

{U„ : n < co} of open sets screening A. For each n < co, there is a closed

discrete set D„ in U„ of cardinality > a„_i. Then D = \Jn<(0Dn is closed

and discrete in X and has cardinality e(X), which is impossible.

Theorem 1. Let X and Y be completely metrizable spaces. Then Y is a closed

completion remainder of X if and only if there is a closed discrete subset of X

of cardinality d(Y).

Proof. Suppose first that Y is a closed completion remainder of X, h: X —> Z

is a dense embedding, Z is completely metrizable, Z\h(X) is closed in Z

and is homeomorphic to Y. Since d(Y) < d(X) = e(X), it follows that if

e(X) is achieved or if d(Y) < e(X) then there is a closed discrete set in X

of cardinality d(Y). Assume then that d(Y) = e(X) and that e(X) is not

achieved. The set K of all points of X at which X has local density e(X) is
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compact. Thus h(K) and Z\h(X) are disjoint closed sets in Z and can be

enclosed in open sets Ux and Uy with disjoint closures. Let

Z' = ZnVY,    X' = h(X) n UY,    Y' = (Z\h(X))r\UY.

Then Z' is completely metrizable, Y' ~ Y, Y' is closed in Z', and X'
is dense in Z'. Now, since I'n[/^ = 0, then for all p £ X' we have

/</p(A") < e(X) = e(Y) + e(X'); therefore e(X') is achieved. Let D be a

closed discrete set in X' of cardinality e(JT). Then h~x(D) is closed and

discrete in X.
Next, assume that X has a closed discrete subset of cardinality d(Y) = a.

For some (perhaps finite) cardinal /?, Y has a dense subset K of cardinality

/?. We further assume that XnY = 0 (otherwise, take disjoint copies X' and
Y'). Since a is infinite and P < a, there is a discrete collection %? of open

sets in X of cardinality /? • <y. Let H be an Axiom of Choice set for %?, and

let T be the induced mapping from H onto %*. Now, // = \Jn<(0 H„ , where

Hm n//„ = 0 for m ^ n , and |//„| = /?, n < co. For each « , let Tn denote a

bijection from K onto //„ .

There exists a sequence {6^, : n < co} for X as in Moore's metrization

theorem [3], i.e., for each n , G'n is an open covering of X, G'n+X C G'n , and

for every p £ X, {St2(G'n , p) : n < co} forms a local base for the topology at

p. For each p £ H, denote by Ro(p) an element of G'0 containing p whose

closure is a subset of T(p) and, having defined Rn-X(p), denote by R„(p) an

element of G'n containing p whose closure is a subset of Rn-X(p). For each

n < co, let C7„ be the collection of all elements g of G'n such that if p £ H

and /<« then g does not intersect both /?,(p) and AT\/?,-_i(p).

Let p denote a metric on Y. For y e Y and r5 > 0 let B(y, S) - {z £ Y :

p(z, y) < 5} . If q £ Y and k < co, define

Ek(q) = B(q, 2'k) U\J{Rk(Tj(s)) : k < j < co and s £ B(q,2~k) n*}.

For / < co define Af, = {Ej(q) : q £ Y and ;' > i}. Let L, = Af, U C7,,
and let Z = luF. Then L0 is a basis for a T\-topology Q on Z and

{Ln : n < co} satisfies the conditions of Moore's theorem, so that (Z, f2) is

metrizable. Clearly, the inclusion maps Ox: X —> Z and <&Y- Y —> Z are

homeomorphisms, X is a dense open set in Z , and Z\X — Y .

Now, let Z' be a completely metrizable space containing Z . Since X and

Z\X are completely metrizable, they are G^-sets in Z'. The union of two

GVsets is a GVset, so Z is a GVset in the complete space Z' and is itself

complete.

Corollary 1. If X and Y are completely metrizable, X is not compact, and Y

is separable, then Y is a completion remainder of X.

Remark. It is clear that if X and Y are metrizable and there is a dense em-

bedding h of X into a completely metrizable space Z such that Z\h(X) ~ Y

and such that h(X) is open in Z , then X and Y must be completely metriz-

able. It is also clear that the metrizable space X is an absolute Fa if and only

if every completion remainder of X is complete. Thus we have

Corollary 2. The completion remainders of R, or, indeed, of any separable, lo-

cally compact, noncompact, metrizable space, are the nonempty Polish spaces.
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Corollary 3. Suppose X and Y are completely metrizable and X is not com-

pact. Let e(X) be achieved, i.e., let X have a closed, discrete set of cardinality

e(X). Then the following are equivalent.

(A) d(Y)<e(X).
(B) Y is a completion remainder of X.

(C) Y is a closed completion remainder of X.

Theorem 2. Suppose X and Y are completely metrizable and X is not compact.

Suppose e(X) is not achieved. Then Y is a completion remainder of X if and

only if d(Y) < e(X) and ldy(Y) < e(X) for every y£Y.

Proof. Let {an : n < co} be an increasing sequence of cardinals whose supre-

mum is e(X). As before, we can assume that XnY = 0. Suppose first that Z

is completely metrizable, Z = XuY, and X is dense in Z . Suppose there is a

point y £Y such that ldy(Y) = e(X). For each open set U in Z containing

y, d(U n X) - e(X). Take a sequence {£/„ : n < co} of open sets in Z,

Un+X c Un , y £ U„ for every n < co, and diam((7„) < 2~" . For each n < co,

there is a closed discrete set Dn in X n U„ , \Dn\ = an . Then D = \Jn<(0Dn is

closed and discrete in X and \D\ = e(X), a contradiction. This completes the
necessity proof.

Next, suppose d(Y) < d(X) and ldy(Y) < e(X) for all y £ Y. As before,
we assume that X n Y = 0. We first consider the special case in which Y =

\Jn<0J Yn is a countable discrete union of closed subsets, each of density less

than e(X). We show in this case that Y is a completion remainder of X in

such a way that in the completion Z = X U Y, the sequence [Y„ : n < co}

converges to a point p of X.

Let p be a point of X such that ldp(X) = d(X). Let C/0 be an open set

in X containing p with diam U < 2~°. There is a closed discrete set D0 in
X, Do c Uo, p 0 Do, |A)| = an. There exists a discrete collection So of

open sets screening D0 U {p} such that \J{G : G £ So} c U0. Let Gtj,p be the

element of So containing p . Having chosen Un-X, Dn-X, S„-X, and G„-XiP ,

take U„ to be an open set in X, p e Un, diamC/„ < 2~", U„ c G„-XiP;

take Dn to be a closed discrete set in X, D„ c U„, p £ Dn , \D„\ = a„ ;

take Sn to be a discrete collection of open sets screening Dn U {p} such that

|J{G : G £ Sn} C Un ; and let Gn<p denote the element of Sn containing p .

As in the sufficiency proof of Theorem 1, there is a topology T„ on (Un\U„+x)

U Yn such that Yn is closed and nowhere dense in (U„\Un+i) U Yn , and where

Sn plays the role of the discrete collection %*. This latter condition implies

that there is a base for Tn that is a -discrete in X. For each n < co, let

U; = U„ U U{^ : m > «}. Then F = (\Jn<w T„) U {U* : n < co} U {U : U
open in X, p g U} is a basis for a completely metrizable topology on XuY,

X\{p} is dense and open in XuY, and {Yn:n < co} converges in X U Y to

We now proceed to the general case. There is a minimal, locally finite open

cover ^ of Y such that if U £ % then d(U) < e(X). Now, \&\ < d(Y) <
e(X), so % is a countable union, g^ = \}n<w%n, where |%| < a„ . Let

^,,m = {c/e%:fi((7)<aw},andlet £/„,„, = U^»,m. Note that d(Un,m)<

a„ • am < f(X). By Engelking [1, Lemma 5.2.4], the countable open cover

{U„,m : «, m < co} has a star-finite open refinement {V„ : n < co}.   Since
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this cover can be shrunk, {C1(F„) : n < co} can be taken to be a star-finite

cover of Y. For n < co, let Yn = V„, let {Y'n : n < co} be a sequence of

disjoint spaces, Y'n ~ Yn, and let Y* be the free union of the 7„"s. Then

there is a completely metrizable topology on XuY* as in the special case, with

[Y^ : n < co} converging to a point p £ X. Let /: X U Y* -+ X U Y be the

obvious quotient map. Note that f~x(q) is finite for all q £ XuY.

We claim that / is a closed and therefore perfect mapping. For, let H c

XuY* be closed. If p £ H then Hf\ Y'n = 0 for all sufficiently large n . Since

f~x(f(H)) = HU\Jnm<cof-x(f(HnY^)nYm), it follows that f(H) is closed
in this case. But it is also clearly closed if p £ H. Thus X U Y is completely

metrizable, since it is a perfect image of a completely metrizable space. Clearly,

X is dense in X UY.

3. Completion remainders of Q and of P

Theorem 3. The completion remainders of Q are the nowhere locally compact

Polish spaces.

Proof. Assume Y is a nowhere locally_compact Polish space, regarded as a

subset of the Hilbert cube. Let K - Y. Then Y is a dense GVset in the

compact metric space K, and, since Y is nowhere locally compact, K\Y is

dense in K. Let G = {G„ : n < co} be a countable basis for K . For n < co, let

U„ be open in K, with T = C\n<w U„, U„D Un+X. Choose an £ (Un\Y) n G„ .
Let ^ = {a„ : n < co} . Then A, being a countable metric space with no isolated

points, is homeomorphic to Q. Let Z = AuY. Then A is dense in Z. It

remains to be shown that Z is completely metrizable. We show that Z is a

G^-set in K. Let Vn = UnU{ai: i < n} . Each Vn , as the union of two G^-setSj

is a G<5-set, so Vn is one and Z = f)n<(0 Vn is thus a G^-set.

Next, assume that Y is a remainder of Q. Let Z = A U Y, where Z is

completely metrizable, ^^Q, AnY = 0, A is dense in Z . It is immediate
that Y is a Polish space. Suppose Y is locally compact at some point p 6 Y.

Let (7y be an open set in Y containing p , J — ClY(UY) is compact. Then J
is closed in Z . There is an open set U in Z such that C/n7= C/y . Then

U\J is open in Z and therefore topologically complete. But U\J is a subset

of A with no isolated point, so U\J ~ Q, a contradiction.

For the sake of completeness, we include the following. The proofs are im-

mediate.

Theorem 4. The topological completions of Q and those of P are the Polish

spaces with no isolated points.

Since Q is a completion remainder of P, the irrationals, one might wonder

whether every a -compact metric space is a completion remainder of P. That

this is not the case is shown in

Theorem 5. If the metrizable space S contains a nondegenerate continuum then

Q x S is not a completion remainder of P.

Proof. We may assume that S is separable. Let / be a nondegenerate contin-

uum in S. Suppose 8:Qx5->Z is an embedding, where Z is a Polish

space. We will prove the theorem by showing that Z\0(Q x S) contains a

nondegenerate connected set and hence is not homeomorphic to P.   Z is a
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dense G^-set in some compact metric space K. Let K\Z = \Jn<w Kn , where

each K„ is compact. For each t £ R, let

L, = f| Cl*(8((/ -2~*,t + 2-") nQ) x /).
n<(o

Note that if t £ Q then L, = 6({r} x /), and if t 0 Q then Lt n6(Q x 5") = 0 .
Let Wn = {t £ R : L, n Kn ^ 0} . Suppose some Wk is dense in some open

interval (a, b) in R. Let q £ (a, b) n Q, and let tn £ Wk with tn ^> q.

Let x„ e L,n n Kk . There is a limit point x of {x„ : n £ co} in Kk . Clearly

x £ Lq = &({q} x I) c Z , a contradiction. Thus each Wk is nowhere dense.

Now pick distance points 5 and p of /, pick q £ Q, and let

8 = pK(Q(q,p),e(q,s)),

where p% is a metric on K . Note that M = {r £ Q : pK(Q(r, p), 0(r, 5)) >

<S/2} is a nonempty open subset of Q. Let t £ M\(Q U Un<co ̂ 1) • Then L, n

AT„ = 0 for all a < w, i.e., L, c Z . Since f £ Q, L, c Z\8(Q x S). Choose
q„ £ M, qn —>t. By passing to a subsequence if necessary, we may assume that

{&({q„} x /): n £ co} converges in the Vietoris topology on 2K to some set J ,

which is nondegenerate, connected, and contained in L,. Thus Z\0(Q x S)

contains a nondegenerate connected set and so is not homeomorphic to P.

Corollary 4.  Q x R is not a completion remainder of P.

Remark. The following generalization has essentially the same proof as that of

Theorem 5.

Theorem 6. If X contains a closed subset Y such that there exists an open

and closed mapping f : Y —> Q such that each f~x(q) is a nondegenerate

continuum, then X is not a completion remainder of P.

Theorem 7. Every a-compact, O-dimensional metrizable space is a completion

remainder of P.

Proof. Suppose Y is as in the hypothesis. There is an embedding cp: Y —►

P. P\(f>(Y) is a G<5-set in P; it is separable, O-dimensional, metrizable, and

nowhere locally compact, so it is homeomorphic to P.

4. Completion remainders of Q(k) and P(k)

Throughout this section k denotes an infinite cardinal. Let Q(/c) denote a

0-discrete metric space in which every open set has cardinality k . Medvedev [2]

has shown that all such spaces are homeomorphic. Let P(/c) denote a complete

metric space with covering dimension 0 that has density k and local density

k at each point and that is nowhere locally k-compact. A straightforward

argument shows that all such spaces are homeomorphic; in particular, P(k)

is homeomorphic to the Baire space B(k) , the countable Cartesian product of

discrete spaces of cardinality k. It follows that P(/c) is a completion remainder

of Q(k) . The O-dimensionality, however, is not necessary. We have

Theorem 8. The completion remainders of Q(/c) are the completely metrizable

spaces that have density k and local density k at every point but that are nowhere

locally K-compact.
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Before proving Theorem 8 we present a lemma that extends the old result of

Niemytzki and Tchyonoff [4] that a metrizable space is compact if and only if

every compatible metric on the space is complete.

Lemma 2. Let X be a metrizable space. Then the following are equivalent.

(A) X is nowhere locally compact.

(B) X can be embedded in a metrizable space Z in such a way that both

X and Z\X are dense in Z .
(C) X admits a compatible metric that is nowhere locally complete.

Proof. (B) => (C) Let X and Z be as in (B); Z can be densely embedded in
a complete metric space (W, p). Then X is dense in W, and if px denotes
the restriction of p to X x X then X is nowhere locally complete according

to px ■
(C) => (A) The proof follows immediately from the Niemytzki-Tychonoff

Theorem.

(A) =► (B) Suppose X is nowhere locally compact. Let p be a metric on

X. We make repeated use of the following observation.

(*) For every nonempty open set U in X, there is a sequence {U„ : n < co}

of nonempty open sets in X such that <70 c U, Un+X c Un for all n < co,

and C\n<a> Un = z.
There exists a locally finite open cover Go of A' such that if g £ Go then

p-diamg < 2~° and g contains a point not in h for any h £ Go\{g} .

For each g £ Go let Ug be a nonempty open set such that Ug c g and

Ug n h = 0 for every h £ Go\{g}. Let {U„(g) : n < co] be a sequence as in

(*), with UoJF) C Ug .
Take G0 = G0 U {Un(g) : g £ Go, n < co}. If x £ X there is an open

set v0(x) containing x that intersects only finitely many elements of G0. Let

Vo = {v0(x) :x£X}.
There exists, for each n, 0 < n < co, collections G„, G'n, V„, {Ug : g £

Gn} , {Um(g): g £ G, m < co} such that

(1) G„ is a locally finite open cover of X and p-diamg < 2~" for all

g£G„.
(2) G„ refines both G'n_x and V„^x .
(3) If g £ G„ then Ug is a nonempty open set such that

(i) VgCg and Ug n h = 0 for every h £ Gn\{g};

(ii) if he G0U--uG„_i and Ugr\Um(h) /0, m < co, then Ug C Um(h);
and

(iii) if h £ G0 U ••• U G„_i   then there is an  m < co  such that   Ug n

Unjh) = 0.

(4) If g £ G„ then {Um(g) : m < co} is as in (*) with U0(g) C Ug .

(5) G'„ = G;_,UG„U {Um(g) :g£Gn,m<co},

(6) Vn is an open cover of X no element of which intersects infinitely many

elements of G'„ .

Let A = Un<o) An , where An n Am = 0 for n ^ m, A r\ X = 0, and,

for each n , \A„\ = \G„\. Let </>„: An —> G„ be a bijection. Let Z = A U X .
For V open in Jt" let Ay = {a £ A: for some m, n < co, a £ An, and

Clx(Um(<i)n(a))) C V}, and let E(V) = V u Av . We observe that {E(V) : V
open in A^}  is a cover of Z  and that if V  and  W are open in X then
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E(V n W) = E(V) n E(W). Therefore, {E(V) : V open in X} is a basis for
a topology fi on Z. We also observe that E(V) c E(W) whenever V cW

and that Clz(E(V)) = C1Z(F) for all open V in X. It is easily seen that fi
is a Hausdorff topology on Z . We list three more observations that are useful

in showing fi is regular.

(1) % = {Um(a) : m < co, a £ A} is non-Archimedean in the sense that if

two members of ^ intersect then one is a subset of the other.

(2) If p£An andq£AnClz(Um(<t>n(P))) then q £ E(Um((j>n(p))).

(3) If p £ An then Clz(E(Um+x(<pn(P)))) c E(Um(<t>(p))).
Next, assume p £ A and E(U) is a basic open set containing p. There is

an n such that p e An . There is an m such that CU(f/m(</)„(p))) c U. Let

F = E(Um+x(cpn(p))). Then by (3) above, C1Z(K) C F(C/m(</»„(p))) C F(<7).
Therefore, fi is regular at points of A .

Next, assume p £ X and E(U) is a basic open set containing p. There is

an n such that if p £ g £ G„ , h £ G„ , and gnh ^ 0, then h c U . Choose
an element g of G„ containing p. For each i < n there is an m, < co such

that p £ Clx(Umi(4>i(a))) for any a e A,■. There is an open set F in I, with

p £ V c g, and CIa-(F) n Cljr(C/m((0,-(a))) = 0 for all a e /*0 U ••• U A„ .
So, if a £ Ao U • • • U An , then a 0 C1Z(F). Suppose ae4, k > n, and
a e C1Z(F(F)) = Clz(K). Then FnF(t/0(a))) ^ 0 and Uo(<j>k(a)) is a subset
of some A in G„ , and h D g ^ 0; so h c U, which implies a G F((7).
Therefore, fi is regular at points of X .

Next, we exhibit a a-locally finite basis for fi. Let Z0 = {E(g) : g £ G0} .
Then X0 is locally finite. For 1 < n < co and k < co, let Z(«, k) = {F(g) :
g £ Gn , Uk(h)C\g = 0 for all h £ G0 U • • • U Gn-X}. Then X(«, k) is locally

finite. Moreover, if Z„ = {£(,§■) : g £ Gn}, then X„ = |Jfc<ft)2:(", k).
Similarly, it follows that for all m, n < co, Am>„ = {E(Um(g)) : g £ G„} is

cr-locally finite.
Then (U„<(02:n) u (Um,«<£UA'".n) is a ^-locally finite basis for fi, so that

(Z, fi) is metrizable by the Nagata-Smirnov theorem.

Clearly, A is dense in Z and so is X. This completes the proof of Lemma

2.
We now return to the proof of Theorem 8. Note that Theorem 3 is Theorem

8 in the special case k = co. From now on we assume k > co.

Assume Y is a completely metrizable space with density k and local density
k at each point. It follows directly from Lemma 1 that Y is nowhere locally

K-compact and therefore nowhere locally compact. We apply Lemma 2 to get

a metrizable space Z such that both Y and Z\Y are dense in Z . We may

assume that Z is completely metrizable, since it can be densely embedded in a

completely metrizable space Z', and that both Y and Z'\Y are dense in Z'.

Let G = \Jn<(0Gn be a er-discrete basis for Z , where \G„\ — k and Gn is

discrete, n < co.
Since Y is completely metrizable, it is a G^-set in Z ; let {V„ : n < co} be

a sequence of open sets in Z , with V„ D Vn+X, f]n<a) Vn = Y.

For each n < co, let An be an Axiom of Choice set for {(g n Vn)\Y : g £

Gn}. Then An is closed and discrete and A = \Jn<(0An is cr-discrete and

has density k and local density k at every point. It follows that A ~ Q(/c).

Moreover, A is dense in Z.  For n = 0, let fFo = Iq , and for n > 0, let
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Wn = Ao U • • • U A„_x U Vn. Since each At is closed and Vn is open, W„ is a

G^-set in Z , so AuY = f)n<(0 Wn is a G^-set in Z and therefore completely

metrizable.
Next assume that Y is a completion remainder of Q(k) . Then there exist

^ and Z , A ~ Q(k) , Z completely metrizable, Z = ^U7, and A n 7 = 0 .
Since ^ is an absolute FCT , 7 is a G^-set in Z and thus completely metrizable.

Since A is dense in Z , we have rf(Y") < <i(Z) < d(A) = k . Since Y is dense

in Z, we have k = </(y4) < d(Z) < d(Y). Therefore, d(Y) = k . Similarly,
ldp(Y) = k for each p £ Y. It follows from Lemma 1 that Y is nowhere
locally k-compact.

Theorem 9. If Y is metrizable, dimY = 0, and Y is the union of countably

many sets, each the union of a discrete collection of compact sets, then Y is a

completion remainder of P(/c).

Proof. The proof is very similar to that of Theorem 6. Firstly, we know that

there is an embedding O: Y —> P(/c). Secondly, P(/c)\<P(y) is a G^-set in

P(k) ; it has covering dimension 0 and density k and local density k at every

point and is nowhere locally /c-compact, so it is homeomorphic to P(k) .

5. Open questions

Question 1. What are the completion remainders of P(k) ? We do not have a

characterization even in case k = co.

Question 2. In the class of Moore spaces, what are the completion remainders

of Q or of Q(k) ?
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