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ABSTRACT. We determine the second-order approximation of the anti-self-
duality equation around a reducible Yang-Mills connection on a compact 1-
connected Kihler surface.

The goal of this note is to explain how one can derive an approximation of the
anti-self-duality (ASD) equation around a U(1)-reduction on a compact simply
connected Kihler surface. The idea is to study two different moment map
models associated to such a reduction. This observation is due to Donaldson as
he explained to the author his understanding of a result in [M]. To begin with,
we recall first the following general facts about a reducible ASD connection A4
on a smooth compact simply connected oriented 4-manifold X . We work with
a fixed metric my on X throughout this discussion.

Suppose A is a reducible ASD connection on an SU(2)-bundle P — X
preserving a splitting L & L~! for some line bundle L — X, where ¢;(P) =
—L-L =k >0. Itis a well-known fact that a neighbourhood of [4] € M (my) ;
the moduli space of equivalence classes of mg-anti-self-dual connections on
P, can be modelled as an S'-quotient ¢~!(0)/S! for some finite-dimensional
equivariant map

(1.1) ¢: H) — H?
defined on a small neighbourhood of O € H). (See for instance [L].) Here we
write H ,i , i=0, 1,2, for the cohomology groups of the Atiyah-Hitchin-Singer
deformation complex

0 Q%adP) % Q'(ad P) % Q2(ad P) - 0

associated to the ASD connection 4. More precisely in (1.1), we find a smooth
map
veH, -9 ekerd;c Q'(adP)

modelled on suitable Hilbert spaces so that for |[v| < 1 the map ¢ solves
$(v) = Fy(4 +17) € H}
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with
(1.2) | — v| < const |v|?

(cf. [D]). Here F,(A+ ?¥) denotes the self-dual curvature associated to 4+ 7 .
It is clear from (1.1) and (1.2) the map ¢ satisfies

$(0)=0,  d¢(0)=0,

and so it is of interest to identify the second-order approximation of the map
¢ about O € H!. This can be achieved on a simply connected Kahler surface
provided certain assumptions are made. (See (1.6) for details.)

In order to explain this, we pass the above discussion to a compact simply
connected Kihler surface Y. So assume now the metric my on Y is Kihler
and L — Y denotes a holomorphic line bundle satisfying

L-L=-k and wo:-L=0,

where w, is the Kihler form on Y associated to mg . Given that Y is a Kahler
surface, one recalls there is defined a moment map u:.% — Q*(ad P) for the
gauge group & action on &/ , the space of connections on P (cf. [AB]). A point
of introducing this map is that the zero set £~!(0) in .% contains precisely -
ASD connections on P since p(A) = F,(A) A wy by a direct calculation. This
interesting relation between the moment map u and the ASD equation leads us
to wonder if there is a role for a moment map in the finite-dimensional model
(1.1) for the ASD equation. The point is that if 4 is a reducible connection on
P, then it is well known that H! is a direct sum of complex spaces C? and
C4 for some p, g > 0 and that the isotropy group I'y ~ S! ¢ & of A4 acts on
these complex spaces with weights 2 on C? and -2 on C? (cf. [L]). One may
then consider the moment map

uo: HY ~C? & C? — iR,

. 4 q
1
(210 203 W1 e wg) o §{§:|za|2—§j|wﬂ|2}
a=1 p=1

associated to this group action and ponder if there is a relation between po and
¢, the map in (1.1) modelling the ASD equation near 4. Our main objective
here is to exploit this observation and show under appropriate assumptions
on Y and L that the map uq. if suitably put, is precisely the second-order
approximation of ¢.

To be more precise, we assume in the following discussion that ¢ takes a
particular simple form

. 1 R iwo 0
(1.3) é: {ve Hi <1} =R (0 _l.w()),

but this assumption imposes conditions on Y and L. To see this, we note
that working over complex manifolds one can associate to the connection 4 a
twisted Cauchy-Riemann operator

d4: Q% %adP) — Q% '(ad P)

and define thereby Dolbeault cohomology groups H(.?;i ,i=0,1,2,inanatural
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way. As Y is Kihler, there are natural isomorphisms

(1.4) Hj~H)'
and
(1.5) Hi ~ H)? o HY

relating cohomology groups of these two kinds (cf. [K, p. 248]). Here in our

discussion, one interprets
i (Oh) 0
H}{~R- .
4 ( 0 —la)o)

in (1.5). Thus the map ¢ in (1.3) takes the stated form if the part Hg;z in
(1.5) vanishes, and this is the case if
(1.6) (i) Hy2(Y)=0, (i) Hy2(L*) =0,

conditions on Y and L we shall assume from now on. Note that condition (i)
is equivalent to b7 (Y) =1.
Using such a simple description of ¢, we can define a dual map

g{):Hj—»R,

v»—»—/yTr((é _Ol> ,¢(v)>/\wo

on {|v| < 1} having the property that

_ W) fiwg 0 iy 0
P0) = o7\ 0 —iwp ) SR L0 i )
Clearly then ¢~!(0)/S' provides an alternative model for a small neighbour-

hood of [4] € My(mo). Similar to the map ¢, one finds ¢ satisfies $(0) =

quS(O) = 0, and so we study the second-order approximation of ¢ about
O€ H!. Let

(1.7) Bo(v) = -LTr((é _Ol.> ,F+(A+v)> A wo

where v € H} with |v| < 1.
(1.8) Lemma. On small neighbourhoods {|v| < 1} of O € H}, the function

& is approximated by ¢, in the sense that
$(v) = do(v) + O([v]?).
Proof. Assuming p = © — v, one finds
Fi(A+0)=F (A+v)+dip+(VApP+pAV+PAD),:,
and hence that

—LTr((é _Ol) ,F+(A+1“))>/\w0

0

-~

:—/YTr((d —1) ,F+(A+v))/\w0
~[1e((5 %) din) nwn+otor)
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as |p| < const|v|? by (1.2). Now (1.8) follows should one notice

—/Tr(((l) _()i),djp)Aw():/Tr(dA((l) _Ol.>/\p>/\wo=0
Y Y
since d4(} ;) =0 relative to the splitting L@ L~'. This completes the proof.

Now we identify ¢o. For this purpose, observe first relative to the splitting
L @ L~ the Dolbeault cohomology group HgA" is naturally a direct sum of
Hermitian vector spaces

H' ~ HY ' (L*) @ Hy' ' (L72).
By taking two sets of unitary bases, say,
{pall Sa<h'(L?)} and {wgll < B <h'(L72)},
for Hg; Y(L?) and HgA’ 1(L=?), respectively, one finds

o {hi)z <0 %) Z Wﬂ(o 0)

Furthermore, via the isomorphism H! ~ Hg;' , we obtain in turn a (real) basis
for H!:

— 0 Do _ 0 i(oa _ lrr2y.
aa—(_¢_)a O), Iaa—<_'i$; 0), a—l,...,h(L),

— 0 -, _ 0 —i'//—ﬂ B -
bﬂ—(wp 0 ), Ibﬂ_(il//ﬂ 0 >, ﬂ—l,...,h(L ).

In these notations, it is not difficult to check every vector v € H! can be
uniquely written as a combination

v=( 0o zzgwa)+ 0 -Y Wl
— 2 Z50a 0 S Wl 0

=Y (ReZfa, +ImZyla.) + Y (Re Wlbg + Im W[ Ibp)

Za, WpGC}.

for some complex scalars Z7, W;,ﬂ . Now we can describe the approximation
¢o explicitly as follows. Assume volY = 1.

(1.9) Proposition. For a vector v € H) with |v| small, we have

h'(L?) hY(L™?)
do(v) = Z 1Zg2— Y IWEP S
B=1

Proof. We show do satisfies the system of differential equations

a$0 — a 8(130 _ a _ 112y,

da.| =4ReZ:, dla| =4mZ;, a=1,..., h'(LY);
(1.10) " .

%0 = —4Re W}, 0o =—4ImWf, B=1,...,h"(L7?).

dby |, alby |
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Then, as ¢o(0) = 0, it follows easily that
do(v) = 23 {(Re Zg)? + (ImZg)*} - 2 3 {(Re Wp)? + (Im W )2}
a B
=202 128 =2 Wy
o B
as wished. To show (1.10) we check only

00

(1.11) Sar
v

=4ReZ]

as the argument for other cases are similar. It is, however, just a routine matter
of showing

doior= (3 2)-ic (2, 3))
R ER )
(A )G %)

- 2/(21,l + ZT)igy A @1 Ao = 4Re Z).
Y

Now combining (1.8) and (1.9), we obtain

R hl(LZ) hI(L—Z)
(1.12) dw)=23 ST 1zeP - Y WP +O(vP),
a B

which is the key result of this discussion. Using (1.12), one can deduce, in the
case when both A'(L?) and A!(L~?) are strictly positive, that the link of the
reduction [4] € M;(mp) is a quotient

2h' (LY)—1 2R (L™2)—1 1
(S x S )/S

where S! acts diagonally on the spheres S2#'(X)-1 and S2H(L7H-1 " Also by
varying mq in a small path of metrics, one obtains a parametrized version of
(1.12) that enables one to give an analytical proof of [M, Proposition (4.6)] con-
cerning how a certain moduli space of stable 2-bundles over a complex quadric
surface changes as the polarization varies. The details of showing these asser-
tions are left to those interested.
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