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REGULAR SETS OF SAMPLING AND INTERPOLATION
FOR WEIGHTED BERGMAN SPACES

KRISTIAN SEIP

(Communicated by Theodore W. Gamelin)

Abstract. Let zm„ = am{bn + i), a > 1 , b > 0, m , n integers. For each

weighted Bergman space on the upper half-plane there exists a constant c > 0

such that {zmn} is a set of sampling if and only if b\na < c and a set of

interpolation if and only if b\na > c . When b\na = c , {zmn} is a set of

uniqueness.

1. Introduction

Inspired by the work of Beurling [1, pp. 341-365], Landau investigated in [7]
sets of sampling and interpolation for a class of entire functions containing as a

subclass the Paley-Wiener space of bandlimited functions. This study revealed

in a precise way the role of the Nyquist density in information theory. In a

recent paper [11] R. Wallsten and the author showed that sets of sampling and

interpolation for the Bargmann-Fock space can (as for the Paley-Wiener space)

be described in terms of a certain critical density, which again can be inter-

preted as the Nyquist density. [11] confirmed in particular a conjecture made
by Daubechies and Grossmann [4] about the special role of the von Neumann

lattice.
The results of this paper yield the first evidence that a critical quantity similar

to the Nyquist density exists for Bergman spaces. More specifically, we will
detect a discrete set that relates to the weighted Bergman space exactly as the

von Neumann lattice does to the Bargmann-Fock space.

In order to state our results in a precise manner, let U = {z = x + iy : y > 0}

denote the upper half-plane, and define for each a > 1 the weighted Bergman

space,

Aa(U) = If analytic in U : ff \f(z)\2ya~2 dxdy < oo j .

We say that a discrete subset {zj} of U is a set of sampling for Aa(U) if there

exist positive constants A and B such that

aJJ \f(z)\2y°-2dxdy < ̂ |/(z,)|2yj < B JJ \f(z)\2ya~2dxdy
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for every / G Aa(U). {zj} is a set of interpolation for Aa(U) if for every

sequence {a,} for which {yy a,-} g I2, there exists a function / g Aa(U)

such that f(Zj) - a, for all j. For given parameters a > 1, b > 0 we define

the (regular) discrete set Y(a, ft) = {zmn}m,nez, where zm„ = am(bn + i). Our

main results can then be stated in terms of the following two theorems.

Theorem 1.1. r(a, b) is a set of sampling for Aa(U) if and only if blna <

4n/(a-\).

Theorem 1.2. Y(a, b) is a set of interpolation for Aa(U) if and only if blna >

4n/(a-l).

It will follow easily from our method of proof that for the critical value

blna = 4n/(a - 1), Y(a, b) is a set of uniqueness for Aa(U); this means that

if f(zmn) = 0 for all zm„ , then / = 0.
In the last section we have included a brief remark on the physical interpre-

tation of weighted Bergman spaces, because this aspect has been an important

motivation for our work. For general background on Bergman spaces one may

consult [12].

2. A special function

In this section we construct a function that will play the role of the sine in the

Paley-Wiener space and that of the Weierstrass cr-function in the Bargmann-

Fock space. We obtain precise bounds on its growth and, equipped with these

estimates, we will succeed in employing the ideas of [11] in the next section.

To Y(a, b) we associate the expression

h(z) = (f\ sinnb~la~k(iak-z)\ (y\ c2nb->simib-xam(z - ia~m)\

K)     \ii-sinnb-xa-k(iak + z)    [H sinnb-xam(z + ia~m) j '
\Jc=0 /    \m-\ /

By applying the usual convergence test for infinite products, we find that the

two products converge absolutely for every z = x + iy, y > 0, and h(z) is

thus a function analytic in the upper half-plane with Y(a, b) as its zero-set.

We check directly that h(z) has the basic property

(1) h(az) = -e-2nb~' h(z).

This relation can be used to estimate the growth of h in the following way.

First a straightforward computation shows that there exist positive constants

Ci and C2 so that

CxPu(z,Y(a,b))<\h(z)\<C2

in the strip a~xl2 < y < axl2, where pu(', •) denotes the pseudohyperbolic

distance on U,

Pv(z,V)= jf| .

Combining these inequalities with (1) and the fact that pu(az, Y(a, b)) =

Pu(z, Y(a, b)), we obtain the global estimates

(2) \h(z)\ < Cy-2n{bXna)~'

and

(3) \h(z)\>CPu(z,Y(a,b))y-2^bx^\
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For simplicity, we put y? = 2n(blna)~x in the sequel.

We note in passing that (1) shows that h(z) is an automorphic form with

respect to the Fuchsian group generated by the transformation z i-> az.

Next we construct a related function in the unit disk D = {z : \z\ < 1},

S(z) = (l-z)-2^(/}±£).

From (2) and (3) we obtain immediately the estimates

(4) |g(z)|<C(l-|z|2)^

and

(5) \g(z)\>CpD(z,A)(l-\z\2)^,

where now po(-, •) denotes the pseudohyperbolic distance on D,

PD(Z, C)=    -7—f-    '1 -Cz

and A = {zj} is the image of Y(a, b) under the inverse Cayley transform.

From (5) we get

(6) \g'(Zj)\>C(l-\zj\2)-P-x,

which also will be needed.

3. Proofs

It will be most convenient for us to carry out the proofs in the unit disk. We

then make use of the fact that

is, up to a constant multiple, a unitary map from

Aa(D) = {/ analytic in D : ff \f(z)\2(l - \z\)a~2dxdy < ooj

to Aa(U). {zj} is a set of sampling for Aa(D) if there exist positive constants

A and B such that

aJJ(\- \z\2r\f(Z)\2dp(z) < £(i - \zj\2r\f(Zj)\2

(7) °

<B JJD(l-\z\2T\f(z)\2dp(z)

for every / g Aa(D); here and in the sequel p denotes the invariant area

measure of D with dp(z) = (1 - \z\2)~2 dxdy. {zj} is a set of interpolation

for Aa(D) if for every sequence {a,} for which {(1 - |z7|2)a/2a/} G I2, there

exists a function / G Aa(D) such that f(zj) — aj for all j. These definitions

are equivalent to the ones made for Aa(U) when sets in D are associated to

sets in U via the Cayley transform.

The following simple fact will be used repeatedly. Suppose for a moment,

quite generally, that {z;} is a uniformly discrete set, i.e., we assume that

inf pD(zj, zk) >0.
J^k
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Then if / is analytic in D, we have

(8) £(i - \zj\2y\f(zj)\2 < cJJD(i - \z\2y\f(z)\2dp(z)

whenever s > I. This is easy to see, e.g., as a consequence of the Cauchy-

Schwarz inequality and the reproducing formula [10]

f(z) = C(S,s) ff (1 - Cz)-s/(C)(i - \Q2Ydp(0.

Equation (8) applies in particular to A, which obviously is a uniformly discrete

set.
The main tool in the proof of Theorem 1.1 will be the following interpolation

formula.

Lemma 3.1. If /? > (a - l)/2 and s is any real number, we have for each

f£Aa(D),

with uniform convergence on compact sets.

Proof. By the Cauchy-Schwarz inequality and (6) we have

(10)

^f(zj)    g(z)    /l-[z|2Y
^ g'(Zj) (Z - Zj)   \\-ZZj)

<c^i/(z,)i2(i-|z7i2r^(i-|z,i2)2^-|^|2||^|2\

so that by (8), the sum converges for each / G Aa(D) since 2 + 2/3 - a > 1 .

Let d > 0 be a number such that the circles po(z,zf) = d are nonin-

tersecting. We let S(r) be the closed path consisting of those z on the cir-

cle \z\ = r for which po(z, A) > d and of the shorter parts of the circles

Pd(z , Zj) = d that intersect the circle \z\ = r. It is clear that \S(r)\ is bounded.

Let il(r) denote the domain bounded by S(r) and let / be any polynomial.

For z G Q(r)\A we have by the calculus of residues that

_L / /(C) dC   = f(z) v f(Zj) 1
2*1 JS(r) (1 - zCYg(C) C-z     (1 - |z|2)^(z)    z^{r) (1 - 2zjyg'(Zj) z-Zj-

pD(S(r), A) > d and (5) imply that the integral on the left-hand side tends to 0
as r —* \. This proves the formula for polynomials, and since the polynomials

are dense in Aa(D), it is clear by (10) and (8) that the series converges to f(z)

for all f£Aa(D).   □



SAMPLING AND INTERPOLATION FOR WEIGHTED BERGMAN SPACES 217

We will also need

Lemma 3.2. For 1 < s < t, we have

(ii) // (!"^T dp(z)<c(i-\z\2y->
JJd |i - Czl

and

(12) E^^y^ca-ici2)'-'
j      \l       ''Zj]

for any uniformly discrete set {zj} .

Equation (11) is contained in Lemma 4.2.2 in [12, p. 53], and (12) follows
from (11) by (8).

Before proving the two theorems, we indicate how to show that Y(a, b) is

a set of uniqueness when blna = 4n/(a - 1). If f(zf) = 0 for all j, we may

write f(z) = f(z)g(z) for some function / analytic in D. By (5) and an

argument similar to that of the proof of Proposition 3.1 in [11], / G Aa(D)

implies

yjl7(z)i2(i-|z|2)-'^cyy<oo,

which is absurd unless / = 0.

Proof of Theorem 1.1. We prove first that blna < 4n/(a - 1) is necessary. To

this end, we observe that obviously blna < 4n/(a - 1) is necessary since for

blna > 4n/(a- 1), g £ Aa(D). Assume therefore that blna = 4n/(a- 1) and

that T(a, b) is a set of sampling. By Theorem 5.1 of [10], there exists then a

<5o > 0 such that {Cmn} is a set of sampling whenever p(zmn, Cmn) < 8 . Thus

there exists a 8X > 0 such that the points Cmn = am(bn + i(l - 8X)) constitute

a set of sampling. But this is equivalent to saying that Y(a, (1 - 3x)~xb) is a

set of sampling, which is a contradiction by the first observation.

We prove next the sufficiency. We note that the right inequality of (7) is

identical to (8) with s = a and therefore concentrate on proving the left in-

equality.

Let us for clarity write e = ji - \(a - 1), which by assumption is positive.

By Lemma 3.1, (4), (6), and the Cauchy-Schwarz inequality, we have

(i-iz|2n/(z)i2

.(Ec-l^wfe)l'-|-|;);l^r,lz'|2)',2");

i\       \-.\2\£ix       I _|2'\25+l-2£ t\       |_,|2\l+e

s^[l    ]Zjl ' U[Zj)l li-zTzr1 L |i-zrz|*+i •
j 17    1 k      I k    I

We choose s > e so that (12) applies to the last sum. Thus

(i - |z|2n/(z)i2 < c£(i - |z;i2n/(z,)i2(i - \zj\y{\~^sl~\
j \i  zjz\
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Now integrating termwise with respect to p and using (11), we get the desired

estimate.   □

Proof of Theorem 1.2. To prove that blna > 4n/(a - 1) is necessary, we con-

sider the problem of constructing a function f £ Aa(U) for which f(zmn) — 0

except when m = n = 0. By the same argument as used for proving that

T(a, b) is a set of uniqueness when blna = 4n/(a - 1), we find that there is

no solution if blna > 4n/(a - 1).

Assume now that e = j(a- I)- B > 0. The interpolation problem is solved

explicitly by the formula

fiz) = y -li_^L (IzNiY
n >    ^g'(Zj)(z-Zj)\l-Zjz)

where s > e . By (4), (6), and the Cauchy-Schwarz inequality, we have

(i-iz|2n/(z)i2

(/i       |_.|2\i+l/2-£/i _ I _|2\ 1/2+e \

D'-|x/^n"-|1^,.^,|,|)    j

(\ — \7 .\2\s-et\ _\-.[2\\+2t (\       |_,|2\i+l-E

sD'-tfm./ "'.'-iV'"   E'rliV' •
j 17    1 k        I k   I

We apply (12) to the last sum, yielding

(i - |z|2n/(z)i2 < c£u - \zj\2r\f(zj)\2(i - \zj\y-* j^Sp-
j I 7    I

We integrate termwise with respect to p, use (11), and see that / G Aa(D).   □

4. Remarks

(A) The weighted Bergman space Aa(U) is the image of the Hardy space

H2(R) under the wavelet transform,

/oo _s(t)g((t-x)/y)dt,
-OO

with analyzing wavelet
g(t) = (/+o-(a+i)/2

[5]. Aa(U), therefore, can be considered as a time-scale representation of sig-

nals. Most notably, by the same transform, Aa(U) yields a phase space repre-

sentation of quantum mechanics on the half-line, relevant in particular for the

hydrogen atom; see Paul's part of [8].
The Y(a, b) generate discrete wavelet transforms. A set of sampling Y(a, b),

a term we have borrowed from [7], corresponds via the wavelet transform to a

frame of wavelets. See [3] for a general discussion of wavelet frames and their

applications in signal analysis.
(B) It is known from [2] that if, roughly speaking, a discrete set is sufficiently

dense then it is a set of sampling for a given Bergman space.   Similarly, a
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sufficiently sparse set will be a set of interpolation [9]. These results, however,

give no hint about a possible critical density.

(C) With one exception (the proof of the necessity in Theorem 1.1), our

method of proof applies to Lp spaces with 0 < p . We have concentrated on
the case p = 2 for simplicity and because it is the most interesting with respect

to the applications and physical interpretation that we have in mind.

(D) The essential ingredients in our approach are the estimates (4) and (5).

They can be obtained for any (analytic) automorphic form with respect to some

Fuchsian group with compact fundamental domain, and we have analogues

of our theorems for zero-sets of such forms; the critical quantity then is the

hyperbolic area of the fundamental domain divided by the number of zeros

there.

What is more interesting is the general question of relating functions with

growth properties (5) or (4) to sets of sampling or interpolation; see [6] for a

description of zero-sets of functions satisfying (4). We believe this is important

for the study of more general sets of sampling or interpolation. The following

observation makes it clear that it is not just a question of adapting the ideas

of [11]. When perturbing the set Y(a, b) in the first part of the proof of

Theorem 1.1, we changed the critical quantity blna. In [11], on the other

hand, a key step consisted in observing that sets that can be viewed as "uniform

perturbations" of each other are essentially equivalent when considering the

sampling or interpolation problem.

Note added in proof. A general treatment of sets of sampling and interpolation

for weighted Bergman spaces can be found in the author's paper "Beurling type

density theorems in the unit disk," recently submitted for publication.
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