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TOWARD A PRECISE SMOOTHNESS HYPOTHESIS

IN SARD'S THEOREM

S. M. BATES

(Communicated by Charles Pugh)

Abstract. The familiar C*  smoothness hypothesis in the Morse-Sard Theo-

rem can be weakened to C*_' •l .

I. Introduction

Let /: R" -» Rm be a differentiable mapping. A question of fundamental

importance in differential topology and dynamical systems concerns the measure

of the critical value set of /, i.e., the image under / of those points xeR"
such that Df(x) is not surjective. The basic theorem regarding this problem is

due to Morse and Sard (see [9, 10]):

The Morse-Sard Theorem. Let f:Rn -» Rm be a Ck map. If k >

max{« - m + 1, 1}, then the set of critical values of f has Lebesgue m-measure
zero.

The necessity of the above differentiability requirement was established by

Whitney [11], who constructed a C1 map /: R2 -* R not constant on a con-

nected set of critical points (see also [1, 2, 4, 5]). Since the appearance of

Whitney's example, investigations of the geometry of critical sets and critical
values have led to various more precise formulations of the Morse-Sard Theo-

rem (e.g., [3, 7, 8, 12]).
A map / £ Cp(R" , Rm) is said to belong to Cp'x if DPf is locally Lipschitz

on R" . One object of this paper is to prove

Theorem 1. Let n, m be positive integers with n > m and k = n - m + 1. If

f £ Ck~x•' (R" , Rm) then the set of critical values of f has m-measure zero.

Thus the differentiability requirement in the classical Morse-Sard Theorem

can be relaxed from Ck to C*-1 -'.

For a £ (0, 1), recall that / £ CP(R", Rm) is said to be of (Holder) smooth-
ness class C'a = Cp+a if for every compact 5cR", there exists a real constant
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M such that

\\D»f(x)-IFf{y)\\<M\x-y\a
for all x, y £ B. A subset E c R" is called a set of rank r for f provided

rankDf(x) <r for all x £ E. The central theorem of this paper is

Theorem 2. Let n, m, and r be nonnegative integers satisfying n > m > r,

and define s = (n - r)/(m - r). If E is a set of rank r for f: R" -> Rm and

either

(a) seZ+ and /eC1"1'1 or

(b) feO,
then f(E) has m-measure zero.

Note that by substituting r = m — 1 into the statement of Theorem 2, one

obtains Theorem 1.
We remark that Norton [7, 8] has proven Theorem 2 under more stringent

smoothness requirements or, alternatively, under the assumption that E has n-

measure zero. Theorem 2(a) is stronger than Federer's Theorem 3.4.3 [3], which

implies the same conclusion for integer 5 provided f £ Cs. Theorem 2(b)

improves the estimates given by Yomdin's Theorem 5.3 [12], which concludes

that the entropy dimension (and hence Hausdorff dimension) of f(E) is at

most m.

The degree to which Theorem 2 is itself sharp is illustrated by the following

fact, proven by the author in [2].

Theorem 3. For n, m, r, s as in Theorem 2, there exists a map f: R" —► Rm

contained in C for all real t < s and a subset E of rank r for f such that

f(E) contains an open set.

Thus any further improvement of Theorem 2 and in particular of the Morse-
Sard Theorem must distinguish between C •' and smoothness classes contained

in C for all t < p + 1 .
Finally, we note that an application of Theorem 2 to singular mappings ap-

pears in [2].
We denote by lm the Lebesgue outer measure on Rm . A subset E cRm is

called m-null, resp. w-finite, provided lm(E) = 0, resp. lm(E) < oo .

II. Proof of Theorem 2

A crucial observation is that the proof of Theorem 2 reduces to the case

r = 0; accordingly, our goal in the next section is to prove

Lemma 1. Let n, m be positive integers with n > m, and define v = n/m. If

E cR" is a set of rank 0 for f: R" -> Rm and either
(a) v£Z+ and f£Cv~x'x or

(b) fee
then f(E) is m-null.

Assuming Lemma 1 for the time being, we now derive Theorem 2(a) follow-

ing Sard and Norton:
For i = 0, 1,..., r, r < m, define /?,■ = {x £ E : rankDf(x) = i}; we

show lm f(Rj) = 0 for each i.
(1) lmf(Ro) = 0 by Lemma 1(a), since v < s and f is Cs-1'' .
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(2) Fix i £ {1, ... , r} and p 6 R,■■. It will suffice to find a neighborhood V
of p such that f(VnRj) is m-null. By the C5-11 Inverse Function Theorem

(see [7, 8]), there are coordinates in some neighborhood V of p such that

f(Xx , ... , X„) = (XX , ... , X{, g(xx, ... , xn)),

where g £ CS~X'X(R" , Rm~'). In these coordinates,

DfW={ld*'   D(g\\xx°...,xl))'

where Id, is the identity matrix on R', y — (xx, ... , xn), and g\\xx, ... , xt:

R"~' -> Rw~' is the mapping defined by (xi+x, ... , x„) i-> g(xx, ... , xn).

Note that D(g\\xx , ... , xt) has rank 0 for all y £ Rt.
For S c R" and (xx, ... , x,) 6 R', we denote by S[xx, ... , xt] the set

of points (xt+i, ... ,xn) £ R"~' such that (xx, ... ,xn) £ S (this is the

"slice" of S through (xx, ... , Xj)). Then g\\xx, ... , x, maps the rank 0 set

(Vn Rt)[xx ,...,xt] onto (f(V n Ri))[xx ,...,*,].
Because (n - i)/(m - i) < (n - r)/(m - r) = s and g\\xx, ... , Xj is Cs~x•' ,

it follows from Lemma 1(a) that every slice of f(Vn R,) is (m - z)-null in

Rm_'. Applying Fubini's Theorem to R' x Rm~', we conclude that f(Vn /?,)

is m-null, and Theorem 2(a) follows.

To prove Theorem 2(b), one proceeds analogously, replacing Ci_l ■' with Cs

and Lemma 1 (a) with Lemma 1 (b) throughout the above argument.

III. Proof of Lemma 1

In order to prove Lemma 1, we require the following result due to Norton.

Lemma 2 (Norton). Let n,m be positive integers with  n > m, and define

v = n/m. If E is an n-null set of rank 0 for f: R" -^ Rm and either

(a) v eZ+ and /eC-1-1, or

(b) f€C,
then f(E) is m-null.

The crux of our problem is thus to eliminate from Norton's Lemma the

assumption that E is «-null; for this purpose, we need a further result of

Norton:

The Generalized Morse Criticality Theorem (Norton). Let n and p be positive

integers, t > 1 a real number, E c R" .

(a) There are subsets Ej, j = 0, 1, ... , of E with E = \JEj such that E0
is countable and any g £ C •' (R" , R) critical on E satisfies, for each j,

\g(x) - g(y)\ < Mj\x - y\»+x

for all x, y £ Ej and some M} > 1.
(b) There are subsets Ei, j = 0,1,..., of E with E = (jE's such that Eq

is countable and any g £ C'(R", R) critical on E satisfies, for each j,

\g(x)-g(y)\<Mj\x-y\t

for all x, y £ Ej and some Mj > I.
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Finally, recall that an element xeR" is called a density point of E c R" if

for any sequence of cubes {Q} decreasing to x , the limit

Uml'{EnQ) = l
Q\*      ln{Q)

holds. A familiar theorem from analysis asserts that almost all points of a

measurable set are density points.

We now prove Lemma 1(a). Let n, m be positive integers, define v = n/m ,

and suppose £cR" is a rank 0 subset for a map /: R" —> Rm . Our objective

is to show that f(E) is m-null provided v is an integer and / £ Cv~x •'.

Choose a decomposition {Ej} of E as in part (a) of the Generalized Morse

Theorem. Clearly we may suppose that each Ej is «-finite; we now demonstrate

that f(Ej) is m-null for all j:

(a) Since F0 is countable, /(Fo) is m-null.

(b) Fix j > 1 and a positive integer P.

(i) By part (a) of Norton's Lemma, we may assume that every point of Ej is a

density point of Ej. Choose xo £ Ej, and let Q be a cube of edge X containing

x0 and small enough that any cube Q c Q of edge X(2nP)~x intersects Ej .

If x, y are any two elements of Q n Ej, there evidently exists a covering of

the line segment xy by at most 2nP such subcubes of Q. Consequently, there

exists a sequence {x,}2"q c E containing x, y and satisfying |x, -x,+i| < X/P
for i = I, ... , 2nP - 1 . By part (a) of the Generalized Morse Theorem applied

to each component function of /, there exists a constant M > 1 depending

only on / and Ej such that

\f(x) - f(y)\ < \f(xx) - f(x2)\ + ■■■ + \f(x2nP.x) - f(x2nP)\

< M(\xx - x2|" + • • • + \x2„p-i - x2nP\v) < 2nMXvPl~v.

Thus lm(f(Q n Ej)) < (2nM)mXnPm{-x-^ = (2«A/)mFm<1-">/„({2).

(ii) Since for a given P the family of all cubes Q chosen as above for all

x0 G Ej evidently comprises a Vitali family for Ej, there exists a sequence

{Qi} of such cubes satisfying ln(Ej \ IJ Q,) = 0 and £/„«2/) < 2l„(Ej).
Applying part (a) of Norton's Lemma once again, it follows that

Uf(Ej)) <J2lMQ'nEJ» $ (2«M)mFm('-t"^/M(e/)

< 2(2nM)mPm{X-vHn(Ej).

Since F may be chosen arbitrarily large, f(Ej) is m-null, and the assertion

follows.
To prove Lemma 1(b), choose a decomposition {F'| of E as in part (b) of

the Generalized Morse Theorem, and proceed analogously.
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