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ABSTRACT. If BG. BH are the classifying spaces of compact Lie groups. with
H connected, then the mapping space functor map(BG. —) com-
mutes with p-completion on BH: ie. for cach f: BG — BH the
component (map(BG BH),-‘J,C i1s p-complete. and is homotopy equivalent to
map(BG, BH}),, /.

|. INTRODUCTION

In studying map(BG, BH), the space of maps between the classifying spaces
of two compact Lie groups, it is often useful to know whether the p-adic com-
pletion commutes with the functor map(BG. —) ; special cases where this occurs
were used, for example, in [DZ, JMO, N2, NS]. Here we present a more general
result in this direction:

1.1. Theorem. Let G and H be compact Lie groups, with H connected.
let p be a prime, and i: BH — BH) the natural inclusion. Then for any
map f: BG — BH, the corresponding component of the mapping space,
map(BG, BH)),. /. is p-complete, and

(map(BG. BH),), = map(BG. BH)),,,
is a homotopy equivalence.

The p-adic completion of a space X that we refer to is the (F,)..X of
[BK, I, §4.2], which we denote by X} . However, unless X is nilpotent (e.g.,
simply-connected). X,C need not be p-complete in the sense of [BK, I, §5 &
VII, §2], and so it enjoys few of the properties associated with completion. In
particular, unless X is p-complete, the natural map /: X — X7 will not induce
an isomorphism in F,-homology, so X} will not be the H,(—: F,)-localization
of X (cf. [BK, §2.1]) and (X}})) # X} .

In §2 we list some facts about Z"-modules needed to prove the theorem. In 63
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In §4 the Bousfield-Kan spectral sequence is used to prove p-completeness. The
required homotopy equivalence is shown in §5.

2. FINITELY GENERATED Z;,\-MODULES

Let ¥ denote the class of finitely generated Z;’,‘-modules, where ZI’,‘ is the

ring of p-adic integers, and let &' =% U{G : G is a finite p-group } .
2.1. Lemma. If X is a connected space with m; X € &' for each k > 1, then
(1) H.(X;F,) is of finite type, that is, H(X; F,) is finite for each k > 0;

2) X Ois p-complete and F4-acyclic for any prime q # p, that is, H,(X; F,)

Proof. Any M € & is isomorphic to N ®Z",‘ , where N is a finitely generated
abelian group. Thus K(M, n) ~K(N, n),, which is p-complete (see [BK, VI,
5.2]), and so H,(K(M, n);F,) is of finite type for all n > 1. Therefore, if Y
is a simply-connected space with each 7;Y € & , by induction on its Postnikov

system, we see H,(Y; F,) is of finite type.

Now assume 71X = G € ¥’ and consider the universal covering fibration
for X;

(%) X->X-K(G,1).

The action of G on the universal covering space X makes H,(f(; F,) into
a G-module, and one has a Leray-Cartan spectral sequence (cf. [CE, XVI, §9]),
with
E! 2 H\(G; H(X; Fp)) = H.s(X; Fp).

Now for fixed ¢, let V = H;(X; F,) and let ¢: G — Aut(V) describe the
ni-action. Aut(V) is finite, and if G € ¥ then G is g-divisible for any ¢
prime to p, so in any case Im(¢$) C Aut(V) is a finite p-group. Thus G acts
nilpotently on V (cf. [BK, II, 5.2]): that is, there is a filtration 0 = V5 C V| C
- Vi---c V=V of G-modules such that G acts trivially on each V;/V;_,.

Using the short exact sequences 0 — V,_; — V; — V;/V,_; — 0, we see by
induction on i that each H;(G; V;)—and so in particular H(G; V) & Eszy,—is
finite. Thus H,(X; F,) is of finite type.

Furthermore, because G acts nilpotently on V', by the mod-F, fiber lemma
of [BK,II, 5.1] the universal covering (x) remains a fibration after p-completion:

(%)) X) - X) - K(G, 1)) .

Since G = m;X € &', K(G, 1) is p-complete; similarly X ~ 5(;,‘ (being
nilpotent, with 7, X € ¥ ). The Five Lemma, applied to the natural map from
the long exact sequence of (x) to that of (x);, shows =X — =,(X}) is an
isomorphism, so X is p-complete. Since HX=0= I?(*K(G, 1) for g #p by
[BK, VI, 5.6], the same holds for X. O

2.2. Corollary. Let X be a pointed connected space such that m, X € & for
k > 2, and suppose that m\X has a finite normal series

1=Gy< G <--<24Gr1 <G, =m X,
where each G;/G;—, € ¥'. Then X is p-complete and Fg-acyclic for g # p .
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Proof. Foreach i=1,...,n,let X;_; —» X; - K(G;/G;—, 1) be the cov-
ering fibration corresponding~to the short exact sequence 1 — G;,_; — G; —
Gi/Gi—;y — 1 (where Xp = X and X, = X). As above, K(G,;/G,-;, 1), and
by induction also X;_;, are p-complete and F,-acyclic, with F,-homology of
finite type. The same then holds for X;, too, by the covering-space argument
in the proof of Lemma 2.1, and thus for X. 0O

2.3. Lemma. For A, C e ¥ :

(1) If 0 - A - B —» C — 0 is a short exact sequence of abelian groups,
then Be & .
(2) Any group homomorphism f: C — A is Z,-linear.

Proof. 1t is enough to show that the forgetful functor induces isomorphisms
(1) Ext;:(c, A) 2 Extz(C, 4) and Homg, (C, 4) = Homg(C, 4).

As above, write 4 = 4' ® Z,, C = C' ® Z, for finitely generated abelian
groups A’, C’. Since Ext and Hom commute with finite direct sums, it is
enough to consider cyclic C and A, that is, each either Z;,‘ or Z/p" for some
r.

By the Change of Rings Theorem (see [HS, IV, Theorem 12.2]) we know

Extz, (C, 4) = Extz, (C'® Z), A) SExti(C',4) (n>0),

so (1) is satisfied when C is torsion and thus C = C’'.

Now let C =Z, .

(1) If A=Z} then Extz(C, 4) =0 by [Ha, Proposition 2.1].

(2)If A=2Z/p", tensor 0 » Z — Q — Q/Z — 0 with Z} to get the exact
sequence 0 = Tor(Q/Z, Z,) — Z, — Q® Z, — (Q/Z) ® Z, — 0. Applying
Ext}(—, A4) to this, we see that Ext;(Zf,‘, Z/p") = 0 since Z,®Q isa Q-vector
space and Ext3(Q, Z/p") = 0.

We clearly also have Ext,‘,ﬁ? (Z,, A) =0 forany 4.

Finally, Homgz,(Z,, 4) = A for any A € & while Homg(Z,, Z/p") =
Z/p", so

Homg(Z, , Z;) = Homg(Z,, , limZ/p")
= lim Homg(Z; , Z/p") ® imZ/p" = Z;.

Thus Homz(ZI’,\, A) = A for any A € & , too. The required isomorphism is
readily verified. O

3. THE MOD-p APPROXIMATION OF BG

In order to prove Theorem 1.1 for more general G, we start with the known
case when G is p-toral, i.e., oG is a finite p-group and the identity component
of G is a torus. Then we have
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3.1. Lemma. If P isa p-toral group and H is a connected compact Lie group,
then for any f:BP — BH, (map(BP, BH),), — map(BP, BH));,, is a ho-
motopy equivalence.

This is contained in [JMO, Theorem 3.2]; we give an outline of the proof:

By [N1, Theorem 1.1], f ~ Bp for some homomorphism p : P — H;
let C(p) denote its centralizer. The homomorphism C(p) x P — H passes to
classifying spaces and has an adjoint BC(p) — map(BP, BH) Bp > or if we first
complete,

BC(p), — map(BP, BH});o3,.

The first map induces an H,(—; F,)-isomorphism by [N1], and so a homotopy
equivalence after completion (see [BK, I, 5.5]), while the second is shown in
[JMO, loc. cit.] to be a homotopy equivalence. O

3.2. Remark. Since C(p) is compact and 7oC(p) is a finite p-group (cf.
[JMO, Proposition A.4]), the homotopy groups 7, (map(BP, BH))..p,) are
finitely generated Zl’,\-modules for kK > 2 and a finite p-group for k = 1.

We now recall some results of Jackowski, McClure, and Oliver on the mod-p
approximation of BG:

For any compact Lie group G, let &,(G) denote the full subcategory of the
orbit category @(G) whose objects are homogenous spaces G/P where P is
a p-toral group and whose morphisms are G-maps. In [JMO, 1.3], Jackowski,
McClure, and Oliver define a full subcategory %,(G) C &,(G) (containing G/P
only for certain “ p-stubborn” P’s), which has the property that

holim EG x¢ (G/P) — BG
e
Fp(G)
is a H,(—; F,)-isomorphism. Here holim denotes the homotopy direct limit

of [BK, XII, §2], and EG x¢ (G/P) ~EG/P ~ BP.
Recall from [BK, I, §4] that for any space X, the p-completion is obtained
as the total space (i.e., homotopy inverse limit) of a certain cosimplicial space:

X) & Tot(]FN‘,,X)’ , where each space (]E,,X)" is homotopy equivalent to an F,-
GEM, i.e., a product of K(F,, n;)’s. Therefore, for any space Z, we have

map(Z, lev\) = map(Z, Tot(EpX)‘) = Tot(map(Z, (]EPX).))

(see [BK, XI, 4.4, 7.6]), so the space of maps into a p-completion is the total
space of a cosimplicial F,-GEM, too.

Now if f:Y — Z is an H,(—; F,)-isomorphism, it induces a homotopy
equivalence map(Z, K(F,, n)) N map(Y, K(F,, n)), and so map(Z, (]F,,X)")

N map(Y, (F,X)¥) is a homotopy equivalence for each k > 0. Therefore, by

[BK, XI, 5.6] the same is true for the Tot’s, and thus map(Z, X7}) L map(Y, X7)
is a homotopy equivalence. Since

map(holimY;, X) = holim map(Y;, X)
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for any diagram {Y;} (cf. [BK, XII, 4.1]), we have a natural homotopy equiv-
alence
map(BG, BH) — holim map(EG/P, BH}).
Zp(G)
Thus, if we restrict a map f : BG — BH to BP — BG (for some G/P in
Zp(G) ), we see that

(2) map(BG, BH});,, — holim map(EG/P, BH});. s,
Zp(G)

is the inclusion of a component (the homotopy inverse limit need not be con-
nected!).

4. COSIMPLICAL SPACES

Let sk.%,(G) be a skeleton of %,(G), that is, a full subcategory of %,(G),
containing a single representative of each isomorphism type of its objects. This
is a finite category, since %,(G) has finitely many isomorphism types of objects,
and finitely many morphisms between them (cf. [JMO, Proposition 1.6]).

Given a map f: BG — BH as above, consider the finite diagram of spaces

X = {Xp}g/pesk#,)» Where Xp = map(BP, BH)),c |,

By cosimplicial replacement (see [BK, XI, §5]) we obtain a cosimplicial space

Y*, with
Y = II Xp,
G/Pjy—--—G/P;,

(where the product, over all possible sequences of n composable morphisms in
sk#,(G), is finite), such that holimg, c){Xp} = Tot Y*.

Now if Z* is the cosimplicial replacement of the analogous infinite dia-
gram of Xp’s for the full category %,(G), then the equivalence of categories
sk %#p(G) — H,(G) (with noncanonical inverse %,(G) — sk#,(G)) induces

a homotopy equivalence Tot Y* = TotZ*, so that up to homotopy the natural
map of (2) above is the inclusion of one component in TotY®:

map(BG, BH)),,;, — holim{Xp} ~ TotY".
% (G)

We choose a basepoint yy € TotY* corresponding to the map io f.

4.1. Lemma. For any f: BG — BH, the space map(BG, BH}),,, is p-
complete and F4-acyclic for q #p.

Proof. Consider the Bousfield-Kan spectral sequence for Y* as above (more
precisely, for the component of y, in TotY* (cf. [B2, §2])) with E; ' =
r,Y*.

For ¢ > 2, the construction of Y* and Remark 3.2 imply that n,Y* € &
and all the cosimplicial morphisms of #,Y* are Z,A,-linear by Lemma 2.3(b);
hence E5'' € F .For t=1, Eg" is a subgroup of 7, Y? = [[n,;Xp, and so is
itself a finite p-group by Remark 3.2.

Moreover, if ¢ > 2, the differentials d, : ES*' — ES*"*"~! are homomor-
phisms, and thus Z,’,\-linear, for t > s> 0. Therefore, E:'' € ¥ for r< oo,
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if t>s>00rt=s>r.For t=1 we have EX"' C E>'] C EJ'! (cf. [B2,
§2.4]), so E%'! is a finite p-group.
Since Ej’f = !_ir_nﬂ (G)s ;X by [BK, XI, 7.1], Lemma 4.2 below, applied to
14

the functors
m(EG xg —) : %(G) — Zy,-Mod ,

shows that there is an N such that E;_” =0 for s>N and t>2.
This in turn implies the complete convergence of the spectral sequence (see
[B2, §4.5]): thus, for each ¢ > 1 there is a finite tower of epimorphisms

n(TotY®, yo) = Onmy = - Qsmty - Qs — -+ Qo - Q_ymy =1,

where Q7 = im{m,(TotY*, yo) — 7, (Tot;Y*, yo)} (cf. [BK, IX, §5.3]), and
for each s > 0 there is a short exact sequence

1 - E;SSH - Oy — Qs — 1.

Now for ¢ > 2 we have E3;**' € & . Therefore, Lemma 2.3(a) implies (by
induction on s) that Q;n, € & forall s, and so n,(TotY®, yg) isin ¥, too.
For t =1 we obtain a finite normal series

0=Go<G < - <aGn <9 Gnyy =m(TotY*, yp),

where G;/G;_y = EN-#1L.N-i42 j5in F for 1 <i< N and Gy,,/Gy = EY!
is a finite p-group. Thus Corollary 2.2 applies, and the component of y in
TotY* is p-complete, and F,-acyclic for g #p. O

The following lemma appeared in an earlier version of [JMO].

4.2. Lemma. If G is any compact Lie group and p a prime, there is an N
such that for any contravariant functor

F: %,(G) — Z)-Mod

we have lim° F =0 for s> N.
— ) (G)

Proof. The homotopy direct limit EZ,(G) = holimg,)G/P is a G-space, and
holim‘g,p(G)F = HE(EZp(G); F) forall s >0 by [JMO, Theorem 1.7]. Here
H¢(—; F) denotes equivariant cohomology with the functor F as coefficient
system (see [I, 2.2]).

By [JMO, Proposition 1.2, Theorem 2.14], there exists a finite dimensional
G-complex X with finitely many orbit types and a G-F,-isomorphism f: X —
E%,(G); that is, a G-equivariant map f such that fH: XH — (EZ,(G))H is
an H,(—; F,)-isomorphism on H-fixed point sets forany HC G.

Since each H((EZ,(G))H; Z) is finitely generated (see [JMO, Proposition
1.1]), /M is in fact an isomorphism in Z)-homology for each H, and there-
fore f isa G-Zl’,‘-homology isomorphism; by [JMO, A.13] this implies that
HE(EZR,(G); F) = HE(X; F) for any Z,-module valued coefficient system.

Now one can filter X by G-skeleta XoC X, C---CX;C---CXx=X s0
that X;/X;_; contains a single orbit type G/P;.If N is the dimension of X,
by induction on the X; one then shows (as in the proof of [JMO, A.13]) that
H{X; F)=0 for s>N. O
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5. THE HOMOTOPY EQUIVALENCE

For a connected compact Lie group H, consider the arithmetic square

BH —— BH"

(3) il |

BHo —%— (BH')q

(see [BK,VI, 8.1]), where X" = []X} is the product over all primes p of the
p-completions and Xgq is the Q-localization.

Without loss of generality, ig is a fibration and (3) is a pullback diagram, so
both horizontal maps have the same fiber F. Since H is compact and BHg,
(BH")q are rational H-spaces, they are even-dimensional rational GEMs (that
is, products of even-dimensional rational Eilenberg-Mac Lane spaces) and F is
an odd-dimensional rational GEM.

For any map f: BG — BH (where G is a compact Lie group), (3) induces
another pullback diagram

map(BG, BH);, ——  map(BG, BH"),,

(4) | |
map(BG, BHg) ., —— map(BG, (BH")g);0ior

As for any compact Lie group, H*~!(BG; Q) =0 for all k > 1 (cf. [Bo,
Theorem 19.1]). Since F ~ [JK(Q, 2r; — 1) is an odd-dimensional rational
GEM, map(BG, F) is an odd-dimensional rational GEM, too, by a direct cal-
culation of its homotopy groups. In particular, map(BG, F) is connected, and
Fp-acyclic for any prime p.

Thus map(BG, F) is the fiber of map(BG, BHg). — map(BG, (BH")q).,
where ¢ is the constant map. Because BHq is an H-space and ig is an H-
map, this is in fact the fiber for a// components and thus for the two horizontal
maps in (4).

Therefore, applying the g-completion functor to the top fibration sequence
in the diagram

map(BG, F) — map(BG, BH), — map(BG, BH"),./,
we get another fibration (by [BK, II, 5.2]):

map(BG, F); — (map(BG, BH),); < (map(BG, BH");, ), ,

with g a homotopy equivalence (since the fiber is contractible).

Finally, Lemma 4.1 implies that (map(BG, BH});,s); is homotopy equiv-
alent to (map(BG, BH));,;) for ¢ = p, and is contractible for g # p, so we
get the desired homotopy equivalence

(map(BG, BH)/), = map(BG, BH)),, .
This completes the proof of Theorem 1.1. O
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