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Abstract. If BG , BH are the classifying spaces of compact Lie groups, with

H connected, then the mapping space functor map(BG, -) com-

mutes with p-completion on BH: i.e., for each f: BG —» BH the

component imap(BG, BH)f)A is p-complete, and is homotopy equivalent to

map(BG,BHp),0/.

1. Introduction

In studying map(BG, BH), the space of maps between the classifying spaces

of two compact Lie groups, it is often useful to know whether the p-adic com-

pletion commutes with the functor map(BG, -); special cases where this occurs

were used, for example, in [DZ, JMO, N2, NS]. Here we present a more general

result in this direction:

1.1. Theorem. Let G and H be compact Lie groups, with H connected,

let p be a prime, and i: BH —► BH^ the natural inclusion. Then for any

map f: BG -> BH, the corresponding component of the mapping space,

map(BG, BH£),■„/, is p-complete, and

(map(BG, BH)^ 3 map(BG, BH;),-o/

is a homotopy equivalence.

The p-adic completion of a space X that we refer to is the (F^^X of

[BK, I, §4.2], which we denote by Xp . However, unless X is nilpotent (e.g.,

simply-connected), X£ need not be p-complete in the sense of [BK, I, §5 &

VII, §2], and so it enjoys few of the properties associated with completion. In

particular, unless X£ is /7-complete, the natural map /: X —► X£ will not induce

an isomorphism in Fp-homology, so Xp will not be the fl*(—; Fp ̂ localization

of X (cf. [BK, §2.1]) and   (Xp)p*XA.

In §2 we list some facts about Z^-modules needed to prove the theorem. In §3

we recall from [JMO] the mod-/? approximation for BG, using p-toral groups.
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In §4 the Bousfield-Kan spectral sequence is used to prove p-completeness. The

required homotopy equivalence is shown in §5.

2. Finitely generated Z£-modules

Let OF denote the class of finitely generated ZA -modules, where Zp is the

ring of p-adic integers, and let &~' = &~ U { G : G is a finite p-group}.

2.1. Lemma. IfX is a connected space with   nkX £ SF' for each k > I, then

(1) H*(X;¥P) is of finite type, that is,   Hk(X;¥p) is finite for each k>0;

(2) X is p-complete and ¥q-acy die for any prime q^p,thatis, ^*(X;F9)
= 0.

Proof. Any M £ 5F is isomorphic to N ® Zp , where N is a finitely generated

abelian group. Thus K(Af, n) ~ K(N, n)p , which is p-complete (see [BK, VI,

5.2]), and so f/*(K(Af, n); ¥p) is of finite type for all n > 1. Therefore, if Y
is a simply-connected space with each 7r,Y G &~, by induction on its Postnikov

system, we see //*(Y; ¥p) is of finite type.

Now assume nxX = G £ ^' and consider the universal covering fibration

for X;

(•) X^X^K(G,l).

The action of G on the universal covering space X makes Ht(X; ¥p) into

a C7-module, and one has a Leray-Cartan spectral sequence (cf. [CE, XVI, §9]),

with

Elt St HS(G; H,(X; ¥p)) => Hl+s(X; ¥p).

Now for fixed t, let V = Ht(X; ¥p) and let cp: G -> Aut(F) describe the
nx -action. Aut(F) is finite, and if G £ 9~ then G is ^-divisible for any q

prime to p, so in any case Im(</>) C Aut(F) is a finite p-group. Thus G acts

nilpotently on V (cf. [BK, II, 5.2]): that is, there is a filtration 0 = V0 C Vx c
■ • • Vi ■ • • c V„ = V   of G-modules such that G acts trivially on each Fj/F,_i .

Using the short exact sequences 0 —► Vj-X —► V,■ —> ̂ /F,-.i —> 0, we see by

induction on /' that each HS(G; Vj)—and so in particular HS(G; V) = E2t—is

finite. Thus /7+(X;Fp) is of finite type.

Furthermore, because G acts nilpotently on V, by the mod- ¥p fiber lemma

of [BK,II, 5.1] the universal covering (*) remains a fibration after p-completion:

K x;-,x;-k(g,i)pa.

Since G = nxX £ !?',  K(G, 1)  is p-complete;   similarly X ~ xp   (being

nilpotent, with rc^X G &). The Five Lemma, applied to the natural map from

the long exact sequence of (*) to that of (*)£, shows   n*X —> n+(Xp) is an

isomorphism, so X is p-complete. Since H+X = 0 = H*K(G, 1) for q / p by

[BK, VI, 5.6], the same holds for X.   D

2.2. Corollary. Let X be a pointed connected space such that nkX £ S?~ for

k > 2, and suppose that nxX has a finite normal series

I = Go < Gx < ■ ■ • < Gn-X < G„ = 7t\X ,

where each C7,/G,_i £&'. Then X is p-complete and ¥ a-acyclic for q^p.
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Proof. For each i — 1, ... , n, let X,_i —► X, —► K(G,7C7,_i, 1) be the cov-
ering fibration corresponding to the short exact sequence 1 -► (7,_i —> (7, —►

Gi/Gi-X -> 1 (where Xo = X and X„ = X). As above, K(G,/G,_i, 1), and
by induction also X,_i, are p-complete and F^-acyclic, with Fp-homology of

finite type. The same then holds for X,, too, by the covering-space argument

in the proof of Lemma 2.1, and thus for X.   □

2.3.   Lemma. For A, C £ &:

(1) If 0 —► ,4 —> B —> C -> 0 is a short exact sequence of abelian groups,
then B £9r.

(2) Any group homomorphism f:C^A is Zp-linear.

Proof. It is enough to show that the forgetful functor induces isomorphisms

(1)     ExtzA(C,^)^Extz(C,^)   and   Homzp(C, A) a Homz(C, A).

As above, write A^ A' ®Zp , C = C ® Z£ , for finitely generated abelian

groups A', C. Since Ext and Horn commute with finite direct sums, it is

enough to consider cyclic C and A, that is, each either ZA or Z/pr for some
r.

By the Change of Rings Theorem (see [HS, IV, Theorem 12.2]) we know

ExtZA (C,A)* Ext^A (C ®Z*,A)^ Extz(C, A)       (n > 0),

so (1) is satisfied when C is torsion and thus C = C .

Now let C = z£.

(1) If A = Z£ then Ext£(C, A) = 0 by [Ha, Proposition 2.1].

(2) If A = 1/pr, tensor 0^Z-»Q^ Q/Z -» 0 with Z£ to get the exact

sequence 0 = Tor(Q/Z, Zp) -> Z£ -» Q ® 1p -* (Q/Z) g> z£ -» 0. Applying

Extz(-, ^) to this, we see that Extz(Z£ , Z/pr) = 0 since Zp ®Q is a Q-vector

space and Extz(Q, Z/pr) = 0.

We clearly also have ExtZA (Zp , A) = 0 for any A .

Finally, HomZA(z£, A) & A for any A £ & while Homz(Zp\ Z/pr) £

Z/pr, so

Homz(Z; , z£) = Homz(Z; , HmZ/p')

a lim Homz(Z£, Z/pr) " limZ/pr a z£.

Thus Homz(Zp, A) = A for any ^ G y, too. The required isomorphism is

readily verified.   □

3. The mod-p approximation of BG

In order to prove Theorem 1.1 for more general G, we start with the known

case when G is p-toral, i.e., 7rnG is a finite p-group and the identity component

of G is a torus. Then we have
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3.1. Lemma. IfP is a p-toral group and H is a connected compact Lie group,

then for any f : BP -♦ BH, (map(BP, BH)y)A -» map(BP, BHA ),■«,/ is a ho-
motopy equivalence.

This is contained in [JMO, Theorem 3.2]; we give an outline of the proof:

By [NI, Theorem 1.1], / ~ Bp for some homomorphism p : P —> H;

let C(p) denote its centralizer. The homomorphism C(p) xP-»H passes to

classifying spaces and has an adjoint BC(p) -» map(BP, BH)Bp , or if we first
complete,

BC(p);^map(BP,BH;),oB/,.

The first map induces an //*(-; ¥p)-isomorphism by [NI], and so a homotopy

equivalence after completion (see [BK, I, 5.5]), while the second is shown in
[JMO, loc. cit.] to be a homotopy equivalence.   □

3.2. Remark. Since C(p) is compact and noC(p) is a finite p-group (cf.

[JMO, Proposition A.4]), the homotopy groups nk(map(BP, BHp)joBp) are

finitely generated ZA-modules for k > 2 and a finite p-group for k — 1.

We now recall some results of Jackowski, McClure, and Oliver on the mod-p
approximation of BG:

For any compact Lie group G, let cfp(G) denote the full subcategory of the

orbit category cf(G) whose objects are homogenous spaces G/P where P is

a p-toral group and whose morphisms are G-maps. In [JMO, 1.3], Jackowski,

McClure, and Oliver define a full subcategory 9tp(G) C cfp(G) (containing G/P

only for certain "p-stubborn" P's), which has the property that

holim EG xG (G/P) -» BG

&r(G)

is a //*(-; Fp)-isomorphism.  Here holim denotes the homotopy direct limit

of [BK, XII, §2], and EG xG (G/P) =EG/P ~ BP.
Recall from [BK, I, §4] that for any space X, the p-completion is obtained

as the total space (i.e., homotopy inverse limit) of a certain cosimplicial space:

Xp = Tot(FpX)* , where each space (¥pX)k is homotopy equivalent to an Fp-

GEM, i.e., a product of K(FP, n,) 's. Therefore, for any space Z, we have

map(Z, XA) = map(Z, Tot(FpX)#) 2 Tot(map(Z, (FPX)*))

(see [BK, XI, 4.4, 7.6]), so the space of maps into a p-completion is the total
space of a cosimplicial FP-GEM, too.

Now if / : Y —> Z is an //,(-; Fp)-isomorphism, it induces a homotopy

equivalence map(Z, K(FP, n)) £ map(Y, K(FP, n)), and so map(Z, (FPX)*)

-^ map(Y, (FPX)*) is a homotopy equivalence for each k > 0. Therefore, by

[BK, XI, 5.6] the same is true for the Tot's, and thus map(Z, X^) £map(Y,xp)

is a homotopy equivalence. Since

map(holim Y,, X) = holim map(Y,, X)-> i-
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for any diagram {Y,} (cf. [BK, XII, 4.1]), we have a natural homotopy equiv-

alence

map(BG, BH£) -» holim map(EG/P, BHA).

\(G)

Thus, if we restrict a map / : BG —> BH to BP <-> BG (for some G/P in

92p(G)), we see that

(2) map(BG, BHA)/o/ - holim map(EG/P, BYL$)iof\„
&P(G)

is the inclusion of a component (the homotopy inverse limit need not be con-

nected!).

4. COSIMPLICAL SPACES

Let sk^p(G) be a skeleton of ^P(G), that is, a full subcategory of 92P(G),
containing a single representative of each isomorphism type of its objects. This

is a finite category, since 92P(G) has finitely many isomorphism types of objects,

and finitely many morphisms between them (cf. [JMO, Proposition 1.6]).

Given a map /: BG —> BH as above, consider the finite diagram of spaces

X = {Xp}G/p6sk^(G),    where XP = map(BP, BHA)/o/|BP.

By cosimplicial replacement (see [BK, XI, §5]) we obtain a cosimplicial space

V, with

Yn =   n   *«.
G/Pf0—•—G/Pin

(where the product, over all possible sequences of n composable morphisms in

sk^p(G), is finite), such that hohmslt5fp(G){XP} £ TotY*.

Now if Z* is the cosimplicial replacement of the analogous infinite dia-

gram of XP 's for the full category 92P(G), then the equivalence of categories

sk^p(G) '-» ^p(G) (with noncanonical inverse ^P(G) —► sk^"p(G)) induces

a homotopy equivalence Tot Y* -=* TotZ* , so that up to homotopy the natural

map of (2) above is the inclusion of one component in Tot Y*:

map(BG, BHA),0/ «-» holim{XP} ~ TotY* .

a,(G)

We choose a basepoint yo £ TotY* corresponding to the map / o /.

4.1. Lemma. For any f: BG —> BH, the space map(BG, BHA),0y is p-

complete and ¥q-acyclic for  q ^ p.

Proof. Consider the Bousfield-Kan spectral sequence for Y* as above (more

precisely, for the component of yo in TotY* (cf. [B2, §2])) with Es2'1 =
ns n,Y*.

For t > 2, the construction of Y* and Remark 3.2 imply that nt\s £ &

and all the cosimplicial morphisms of ntY* axe ZA-linear by Lemma 2.3(b);

hence Es2'' £ &. For t = 1, E°'' is a subgroup of 7^Y° = Y[nxXP, and so is

itself a finite p-group by Remark 3.2.
Moreover, if t > 2 , the differentials dr : Esr'' —► Esr+r • l+r~' are homomor-

phisms, and thus zp-linear, for t > s > 0. Therefore, E,'1 £ & for   r < oo,
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if t > s > 0 or t = s > r. For t = 1 we have E?'x C Fr°iJ C F°-' (cf. [B2,

§2.4]), so F?'1 is a finite p-group.

Since Es2'1 £ lim        *jt,X by [BK, XI, 7.1], Lemma 4.2 below, applied to

the functors
jt,(EG xG -) : 92P(G) -» Z£-Mod ,

shows that there is an N such that Fj'' = 0 f°r s> N and / > 2.

This in turn implies the complete convergence of the spectral sequence (see

[B2, §4.5]): thus, for each t > 1 there is a finite tower of epimorphisms

7t,(TotY*, y0) = QNnt -»••• Qsn, -» Qs-Xnt -»•■• Q0nt -» Q-\7Ct = 1,

where &tt, = im{7r,(Tot Y*, y0) - 7t,(TotsY*, y0)} (cf. [BK, IX, §5.3]), and
for each s > 0 there is a short exact sequence

1-££*»->&*,-»&_,je,-l.

Now for f > 2 we have F^+' G y. Therefore, Lemma 2.3(a) implies (by

induction on 5) that Qsnt £ SF for all s, and so 7r((Tot Y*, yo) is in y, too.

For (=1 we obtain a finite normal series

0 = Go < Gx < ■ ■ ■ < GN < GN+X = nx(Tot V , y0),

where Gy<J,_i = Eg-i+l-N~i+2 is in y for 1 < i < N and GN+X/GN = F^1

is a finite p-group. Thus Corollary 2.2 applies, and the component of yo in

TotY* is p-complete, and ¥q-acyclic fovqj^p.   D

The following lemma appeared in an earlier version of [JMO].

4.2. Lemma. If G is any compact Lie group and p a prime, there is an N

such that for any contravariant functor

F:92p(G)^Z*-Mod

we have lims       F = 0 for s > N.
<-3ir{tS)

Proof. The homotopy direct limit E92P(G) = holim^(G)G/P is a G-space, and

holim^(G)F £ HSG(E9ZP(G); F) for all 5 > 0   by [JMO, Theorem 1.7]. Here

Hq(- ; F) denotes equivariant cohomology with the functor F as coefficient

system (see [I, 2.2]).
By [JMO, Proposition 1.2, Theorem 2.14], there exists a finite dimensional

G-complex X with finitely many orbit types and a G-Fp-isomorphism f: X —*

E92P(G); that is, a G-equivariant map / such that fH: XH — (F^P(G))H is
an //*(-; Fp)-isomorphism on H-fixed point sets for any H C G.

Since each Hk((E92p(G))H; Z) is finitely generated (see [JMO, Proposition

1.1]), /H is in fact an isomorphism in ZA-homology for each H, and there-

fore / is a G-ZA-homology isomorphism; by [JMO, A. 13] this implies that

Hl(E9lp(G); F) £ ifG(X; F) for any ZA-module valued coefficient system.

Now one can filter X by G-skeleta Xo c Xi c ■ • ■ C X,- c • • • C Xfc = X so
that X,/X(_i contains a single orbit type G/P,. If N is the dimension of X,

by induction on the X, one then shows (as in the proof of [JMO, A. 13]) that

tfG(X;F) = 0   for s> N.    □
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5. The homotopy equivalence

For a connected compact Lie group H, consider the arithmetic square

BH   —'—*    BHA

(3) ,] }/

BHQ —J2— (BHA)Q

(see [BK,VI, 8.1]), where XA = Y[Xp is the product over all primes p of the
p-completions and Xq is the Q-localization.

Without loss of generality, iq is a fibration and (3) is a pullback diagram, so

both horizontal maps have the same fiber F. Since H is compact and BHq ,

(BHa)q are rational //-spaces, they are even-dimensional rational GEMs (that

is, products of even-dimensional rational Eilenberg-Mac Lane spaces) and F is

an odd-dimensional rational GEM.

For any map / : BG -» BH (where G is a compact Lie group), (3) induces
another pullback diagram

map(BG,BH)/    -►      mapBG, BHA);o/

<«> i i

map(BG, BHQ)Jo/ -► map(BG, (BHA)Q)/0,o/

As for any compact Lie group, H2k-X(BG; Q) = 0 for all k > 1 (cf. [Bo,
Theorem 19.1]). Since F ~ f[K(Q, 2r, - 1) is an odd-dimensional rational

GEM, map(BG, F) is an odd-dimensional rational GEM, too, by a direct cal-

culation of its homotopy groups. In particular, map(BG, F) is connected, and
Fp-acyclic for any prime p .

Thus map(BG, F) is the fiber of map(BG, BHQ)C -* map(BG, (BHA)Q)C,
where c is the constant map. Because BHq is an //-space and iq is an //-

map, this is in fact the fiber for all components and thus for the two horizontal

maps in (4).

Therefore, applying the g-completion functor to the top fibration sequence
in the diagram

map(BG, F) -» map(BG, BH)/ -» map(BG, BHA);o/,

we get another fibration (by [BK, II, 5.2]):

map(BG, F)A - (map(BG, BH)/)A 4 (map(BG, BHA)/o/)A,

with g a homotopy equivalence (since the fiber is contractible).

Finally, Lemma 4.1 implies that (map(BG, BHA);o/)A is homotopy equiv-

alent to (map(BG, BHA);o/) for q-p, and is contractible for q ^ p, so we

get the desired homotopy equivalence

(map(BG, BH)/); 3 map(BG, BHA),o/ .

This completes the proof of Theorem 1.1.   □
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