MAPPING SPACES OF COMPACT LIE GROUPS AND p-ADIC COMPLETION

DAVID BLANC AND DIETRICH NOTBOHM

(Communicated by Frederick R. Cohen)

ABSTRACT. If **BG**, **BH** are the classifying spaces of compact Lie groups, with **H** connected, then the mapping space functor $\operatorname{map}(\mathbf{BG}, -)$ commutes with p-completion on **BH**: i.e., for each $f \colon \mathbf{BG} \to \mathbf{BH}$ the component $(\operatorname{map}(\mathbf{BG}, \mathbf{BH})_f)_p^{\wedge}$ is p-complete, and is homotopy equivalent to $\operatorname{map}(\mathbf{BG}, \mathbf{BH}_p^{\wedge})_{t \in f}$.

1. Introduction

In studying map(BG, BH), the space of maps between the classifying spaces of two compact Lie groups, it is often useful to know whether the *p*-adic completion commutes with the functor map(BG, -); special cases where this occurs were used, for example, in [DZ, JMO, N2, NS]. Here we present a more general result in this direction:

1.1. **Theorem.** Let G and H be compact Lie groups, with H connected; let p be a prime, and $i: BH \to BH_p^{\wedge}$ the natural inclusion. Then for any map $f: BG \to BH$, the corresponding component of the mapping space, $map(BG, BH_p^{\wedge})_{i \in f}$, is p-complete, and

$$(\mathbf{map}(\mathbf{BG}, \mathbf{BH})_f)_n^{\wedge} \xrightarrow{\simeq} \mathbf{map}(\mathbf{BG}, \mathbf{BH}_n^{\wedge})_{i \circ f}$$

is a homotopy equivalence.

The *p*-adic completion of a space **X** that we refer to is the $(\mathbb{F}_p)_{\infty}\mathbf{X}$ of [BK, I, §4.2], which we denote by \mathbf{X}_p^{\wedge} . However, unless **X** is nilpotent (e.g., simply-connected), \mathbf{X}_p^{\wedge} need not be *p*-complete in the sense of [BK, I, §5 & VII, §2], and so it enjoys few of the properties associated with completion. In particular, unless \mathbf{X}_p^{\wedge} is *p*-complete, the natural map $i: \mathbf{X} \to \mathbf{X}_p^{\wedge}$ will not induce an isomorphism in \mathbb{F}_p -homology, so \mathbf{X}_p^{\wedge} will not be the $H_{\star}(-; \mathbb{F}_p)$ -localization of **X** (cf. [BK, §2.1]) and $(\mathbf{X}_p^{\wedge})_p^{\wedge} \not\simeq \mathbf{X}_p^{\wedge}$.

In $\S 4$ the Bousfield-Kan spectral sequence is used to prove *p*-completeness. The required homotopy equivalence is shown in $\S 5$.

2. Finitely generated \mathbb{Z}_p^{\wedge} -modules

Let \mathscr{F} denote the class of finitely generated \mathbb{Z}_p^{\wedge} -modules, where \mathbb{Z}_p^{\wedge} is the ring of p-adic integers, and let $\mathscr{F}' = \mathscr{F} \cup \{ G : G \text{ is a finite } p\text{-group} \}$.

- 2.1. **Lemma.** If **X** is a connected space with $\pi_k \mathbf{X} \in \mathcal{F}'$ for each $k \geq 1$, then
 - (1) $H_{\star}(\mathbf{X}; \mathbb{F}_p)$ is of finite type, that is, $H_k(\mathbf{X}; \mathbb{F}_p)$ is finite for each $k \geq 0$;
 - (2) **X** is p-complete and \mathbb{F}_q -acyclic for any prime $q \neq p$, that is, $\widetilde{H}_{\star}(\mathbf{X}; \mathbb{F}_q) = 0$.

Proof. Any $M \in \mathscr{F}$ is isomorphic to $N \otimes \mathbb{Z}_p^{\wedge}$, where N is a finitely generated abelian group. Thus $\mathbf{K}(M, n) \simeq \mathbf{K}(N, n)_p^{\wedge}$, which is p-complete (see [BK, VI, 5.2]), and so $H_{\star}(\mathbf{K}(M, n); \mathbb{F}_p)$ is of finite type for all $n \geq 1$. Therefore, if \mathbf{Y} is a simply-connected space with each $\pi_i \mathbf{Y} \in \mathscr{F}$, by induction on its Postnikov system, we see $H_{\star}(\mathbf{Y}; \mathbb{F}_p)$ is of finite type.

Now assume $\pi_1 \mathbf{X} = G \in \mathcal{F}'$ and consider the universal covering fibration for \mathbf{X} ;

$$(\star)$$
 $\widetilde{X} \to \mathbf{X} \to \mathbf{K}(G, 1)$.

The action of G on the universal covering space $\widetilde{\mathbf{X}}$ makes $H_t(\widetilde{\mathbf{X}}; \mathbb{F}_p)$ into a G-module, and one has a Leray-Cartan spectral sequence (cf. [CE, XVI, $\S 9$]), with

$$E_{s,t}^2 \cong H_s(G; H_t(\widetilde{\mathbf{X}}; \mathbb{F}_p)) \Rightarrow H_{t+s}(\mathbf{X}; \mathbb{F}_p).$$

Now for fixed t, let $V = H_t(\widetilde{\mathbf{X}}; \mathbb{F}_p)$ and let $\phi \colon G \to \operatorname{Aut}(V)$ describe the π_1 -action. $\operatorname{Aut}(V)$ is finite, and if $G \in \mathscr{F}$ then G is q-divisible for any q prime to p, so in any case $\operatorname{Im}(\phi) \subseteq \operatorname{Aut}(V)$ is a finite p-group. Thus G acts nilpotently on V (cf. [BK, II, 5.2]): that is, there is a filtration $0 = V_0 \subset V_1 \subset \cdots V_i \cdots \subset V_n = V$ of G-modules such that G acts trivially on each V_i/V_{i-1} .

Using the short exact sequences $0 \to V_{i-1} \to V_i \to V_i/V_{i-1} \to 0$, we see by induction on i that each $H_s(G; V_i)$ —and so in particular $H_s(G; V) \cong E_{s,i}^2$ —is finite. Thus $H_{\star}(\mathbf{X}; \mathbb{F}_p)$ is of finite type.

Furthermore, because G acts nilpotently on V, by the mod- \mathbb{F}_p fiber lemma of [BK,II, 5.1] the universal covering (\star) remains a fibration after p-completion:

$$(\star)_n^{\wedge}$$
 $\tilde{\mathbf{X}}_n^{\wedge} \to \mathbf{X}_n^{\wedge} \to \mathbf{K}(G, 1)_n^{\wedge}$.

Since $G = \pi_1 \mathbf{X} \in \mathcal{F}'$, $\mathbf{K}(G, 1)$ is *p*-complete; similarly $\widetilde{\mathbf{X}} \simeq \widetilde{\mathbf{X}}_p^{\wedge}$ (being nilpotent, with $\pi_k \widetilde{\mathbf{X}} \in \mathcal{F}$). The Five Lemma, applied to the natural map from the long exact sequence of (\star) to that of $(\star)_p^{\wedge}$, shows $\pi_{\star} \mathbf{X} \to \pi_{\star} (\mathbf{X}_p^{\wedge})$ is an isomorphism, so \mathbf{X} is *p*-complete. Since $\widetilde{H}_{\star} \widetilde{\mathbf{X}} = 0 = \widetilde{H}_{\star} \mathbf{K}(G, 1)$ for $q \neq p$ by [BK, VI, 5.6], the same holds for \mathbf{X} . \square

2.2. Corollary. Let X be a pointed connected space such that $\pi_k X \in \mathcal{F}$ for $k \geq 2$, and suppose that $\pi_1 X$ has a finite normal series

$$1 = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_{n-1} \triangleleft G_n = \pi_1 \mathbf{X} ,$$

where each $G_i/G_{i-1} \in \mathcal{F}'$. Then **X** is p-complete and \mathbb{F}_q -acyclic for $q \neq p$.

Proof. For each i = 1, ..., n, let $\mathbf{X}_{i-1} \to \mathbf{X}_i \to \mathbf{K}(G_i/G_{i-1}, 1)$ be the covering fibration corresponding to the short exact sequence $1 \rightarrow G_{i-1} \rightarrow G_i \rightarrow G_{i-1}$ $G_i/G_{i-1} \to 1$ (where $\mathbf{X}_0 = \widetilde{\mathbf{X}}$ and $\mathbf{X}_n = \mathbf{X}$). As above, $\mathbf{K}(G_i/G_{i-1}, 1)$, and by induction also X_{i-1} , are p-complete and \mathbb{F}_q -acyclic, with \mathbb{F}_p -homology of finite type. The same then holds for X_i , too, by the covering-space argument in the proof of Lemma 2.1, and thus for X. \Box

2.3. Lemma. For $A, C \in \mathcal{F}$:

- (1) If $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is a short exact sequence of abelian groups, then $B \in \mathcal{F}$.
- (2) Any group homomorphism $f: C \to A$ is \mathbb{Z}_n^{\wedge} -linear.

Proof. It is enough to show that the forgetful functor induces isomorphisms

(1)
$$\operatorname{Ext}_{\mathbb{Z}_p^{\wedge}}^1(C, A) \cong \operatorname{Ext}_{\mathbb{Z}}^1(C, A)$$
 and $\operatorname{Hom}_{\mathbb{Z}_p^{\wedge}}(C, A) \cong \operatorname{Hom}_{\mathbb{Z}}(C, A)$.

As above, write $A \cong A' \otimes \mathbb{Z}_p^{\wedge}$, $C \cong C' \otimes \mathbb{Z}_p^{\wedge}$, for finitely generated abelian groups A', C'. Since Ext and Hom commute with finite direct sums, it is enough to consider cyclic C and A, that is, each either \mathbb{Z}_p^{\wedge} or \mathbb{Z}/p^r for some

By the Change of Rings Theorem (see [HS, IV, Theorem 12.2]) we know

$$\operatorname{Ext}_{\mathbb{Z}_p^{\wedge}}^n(C,A) \cong \operatorname{Ext}_{\mathbb{Z}_p^{\wedge}}^n(C' \otimes \mathbb{Z}_p^{\wedge},A) \stackrel{\cong}{\to} \operatorname{Ext}_{\mathbb{Z}}^n(C',A) \qquad (n \geq 0),$$

so (1) is satisfied when C is torsion and thus C = C'.

Now let $C = \mathbb{Z}_p^{\wedge}$.

- (1) If $A = \mathbb{Z}_p^{\wedge}$ then $\operatorname{Ext}_{\mathbb{Z}}^1(C, A) = 0$ by [Ha, Proposition 2.1]. (2) If $A = \mathbb{Z}/p^r$, tensor $0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0$ with \mathbb{Z}_p^{\wedge} to get the exact sequence $0 = \operatorname{Tor}(\mathbb{Q}/\mathbb{Z}, \mathbb{Z}_p^{\wedge}) \to \mathbb{Z}_p^{\wedge} \to \mathbb{Q} \otimes \mathbb{Z}_p^{\wedge} \to (\mathbb{Q}/\mathbb{Z}) \otimes \mathbb{Z}_p^{\wedge} \to 0$. Applying $\operatorname{Ext}^1_{\mathbb{Z}}(-\,,\,A)$ to this, we see that $\operatorname{Ext}^1_{\mathbb{Z}}(\mathbb{Z}_p^{\wedge}\,,\,\mathbb{Z}/p^r)=0$ since $\mathbb{Z}_p^{\wedge}\otimes\mathbb{Q}$ is a \mathbb{Q} -vector space and $\operatorname{Ext}^1_{\mathbb{Z}}(\mathbb{Q}, \mathbb{Z}/p^r) = 0$.

We clearly also have $\operatorname{Ext}^1_{\mathbb{Z}^{\wedge}_p}(\mathbb{Z}^{\wedge}_p\,,\,A)=0$ for any A.

Finally, $\operatorname{Hom}_{\mathbb{Z}_p^{\wedge}}(\mathbb{Z}_p^{\wedge}, A) \cong A$ for any $A \in \mathscr{F}$ while $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}_p^{\wedge}, \mathbb{Z}/p^r) \cong$ \mathbb{Z}/p^r , so

$$\begin{aligned} \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}_{p}^{\wedge}, \, \mathbb{Z}_{p}^{\wedge}) &= \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}_{p}^{\wedge}, \, \varprojlim \mathbb{Z}/p^{r}) \\ &\cong \lim \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}_{p}^{\wedge}, \, \mathbb{Z}/p^{r}) \cong \lim \mathbb{Z}/p^{r} \cong \mathbb{Z}_{p}^{\wedge}. \end{aligned}$$

Thus $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}_n^{\wedge}, A) \cong A$ for any $A \in \mathcal{F}$, too. The required isomorphism is

3. The mod-p approximation of **BG**

In order to prove Theorem 1.1 for more general G, we start with the known case when G is p-toral, i.e., π_0 G is a finite p-group and the identity component of G is a torus. Then we have

3.1. **Lemma.** If **P** is a p-toral group and **H** is a connected compact Lie group, then for any $f: \mathbf{BP} \to \mathbf{BH}$, $(\mathbf{map}(\mathbf{BP}, \mathbf{BH})_f)_p^{\wedge} \to \mathbf{map}(\mathbf{BP}, \mathbf{BH}_p^{\wedge})_{i \circ f}$ is a homotopy equivalence.

This is contained in [JMO, Theorem 3.2]; we give an outline of the proof:

By [N1, Theorem 1.1], $f \simeq B\rho$ for some homomorphism $\rho: \mathbf{P} \to \mathbf{H}$; let $\mathbf{C}(\rho)$ denote its centralizer. The homomorphism $\mathbf{C}(\rho) \times \mathbf{P} \to \mathbf{H}$ passes to classifying spaces and has an adjoint $\mathbf{BC}(\rho) \to \mathbf{map}(\mathbf{BP}, \mathbf{BH})_{B\rho}$, or if we first complete,

$$\mathbf{BC}(\rho)_p^{\wedge} \to \mathbf{map}(\mathbf{BP}, \mathbf{BH}_p^{\wedge})_{i \circ B\rho}.$$

The first map induces an $H_{\star}(-; \mathbb{F}_p)$ -isomorphism by [N1], and so a homotopy equivalence after completion (see [BK, I, 5.5]), while the second is shown in [JMO, loc. cit.] to be a homotopy equivalence. \Box

3.2. Remark. Since $C(\rho)$ is compact and $\pi_0 C(\rho)$ is a finite p-group (cf. [JMO, Proposition A.4]), the homotopy groups $\pi_k(\mathbf{map}(\mathbf{BP}, \mathbf{BH}_p^{\wedge})_{i \circ B\rho})$ are finitely generated \mathbb{Z}_p^{\wedge} -modules for $k \geq 2$ and a finite p-group for k = 1.

We now recall some results of Jackowski, McClure, and Oliver on the mod-p approximation of **BG**:

For any compact Lie group G, let $\mathscr{O}_p(G)$ denote the full subcategory of the orbit category $\mathscr{O}(G)$ whose objects are homogenous spaces G/P where P is a p-toral group and whose morphisms are G-maps. In [JMO, 1.3], Jackowski, McClure, and Oliver define a full subcategory $\mathscr{R}_p(G) \subset \mathscr{O}_p(G)$ (containing G/P only for certain "p-stubborn" P's), which has the property that

$$\xrightarrow[\mathscr{R}_p(G)]{} EG \times_G (G/P) \to BG$$

is a $H_{\star}(-; \mathbb{F}_p)$ -isomorphism. Here holim denotes the homotopy direct limit of [BK, XII, §2], and $\mathbf{EG} \times_{\mathbf{G}} (\mathbf{G/P}) \cong \mathbf{EG/P} \simeq \mathbf{BP}$.

Recall from [BK, I, §4] that for any space X, the *p*-completion is obtained as the total space (i.e., homotopy inverse limit) of a certain cosimplicial space: $\mathbf{X}_p^{\wedge} \stackrel{\text{def}}{=} \operatorname{Tot}(\underline{\mathbb{F}}_p \mathbf{X})^{\bullet}$, where each space $(\underline{\mathbb{F}}_p \mathbf{X})^k$ is homotopy equivalent to an $\underline{\mathbb{F}}_p$ -GEM, i.e., a product of $\mathbf{K}(\underline{\mathbb{F}}_p, n_i)$'s. Therefore, for any space \mathbf{Z} , we have

$$\operatorname{map}(\boldsymbol{Z}\,,\,\boldsymbol{X}_{p}^{\wedge}) = \operatorname{map}(\boldsymbol{Z}\,,\,\operatorname{Tot}(\underset{\sim}{\mathbb{F}_{p}}\boldsymbol{X})^{\bullet}) \cong \operatorname{Tot}(\operatorname{map}(\boldsymbol{Z}\,,\,(\underset{\sim}{\mathbb{F}_{p}}\boldsymbol{X})^{\bullet}))$$

(see [BK, XI, 4.4, 7.6]), so the space of maps into a p-completion is the total space of a cosimplicial \mathbb{F}_p -GEM, too.

Now if $f: \mathbf{Y} \to \mathbf{Z}$ is an $H_{\star}(-; \mathbb{F}_p)$ -isomorphism, it induces a homotopy equivalence $\operatorname{map}(\mathbf{Z}, \mathbf{K}(\mathbb{F}_p, n)) \xrightarrow{f} \operatorname{map}(\mathbf{Y}, \mathbf{K}(\mathbb{F}_p, n))$, and so $\operatorname{map}(\mathbf{Z}, (\mathbb{F}_p\mathbf{X})^k)$ $\xrightarrow{f} \operatorname{map}(\mathbf{Y}, (\mathbb{F}_p\mathbf{X})^k)$ is a homotopy equivalence for each $k \geq 0$. Therefore, by

[BK, XI, 5.6] the same is true for the Tot's, and thus $\max(\mathbf{Z}, \mathbf{X}_p^{\wedge}) \xrightarrow{f^*} \max(\mathbf{Y}, \mathbf{X}_p^{\wedge})$ is a homotopy equivalence. Since

$$\mathbf{map}(\underbrace{\mathbf{holim}}_{} \mathbf{Y}_{i} , \mathbf{X}) = \underbrace{\mathbf{holim}}_{} \mathbf{map}(\mathbf{Y}_{i} , \mathbf{X})$$

for any diagram $\{Y_i\}$ (cf. [BK, XII, 4.1]), we have a natural homotopy equivalence

$$\operatorname{map}(\operatorname{BG}\,,\,\operatorname{BH}^\wedge_p) \to \underbrace{\operatorname{holim}}_{\mathscr{R}_p(G)}\operatorname{map}(\operatorname{EG}/\operatorname{P}\,,\,\operatorname{BH}^\wedge_p).$$

Thus, if we restrict a map $f : \mathbf{BG} \to \mathbf{BH}$ to $\mathbf{BP} \hookrightarrow \mathbf{BG}$ (for some $\mathbf{G/P}$ in $\mathcal{R}_p(\mathbf{G})$), we see that

(2)
$$\operatorname{map}(\mathbf{BG}, \mathbf{BH}_{p}^{\wedge})_{i \circ f} \to \underbrace{\operatorname{holim}}_{\mathscr{R}_{p}(G)} \operatorname{map}(\mathbf{EG/P}, \mathbf{BH}_{p}^{\wedge})_{i \circ f|_{\mathbf{BP}}}$$

is the inclusion of a component (the homotopy inverse limit need not be connected!).

4. Cosimplical spaces

Let $sk \mathcal{R}_p(G)$ be a skeleton of $\mathcal{R}_p(G)$, that is, a full subcategory of $\mathcal{R}_p(G)$, containing a single representative of each isomorphism type of its objects. This is a finite category, since $\mathcal{R}_p(G)$ has finitely many isomorphism types of objects, and finitely many morphisms between them (cf. [JMO, Proposition 1.6]).

Given a map $f: \mathbf{BG} \to \mathbf{BH}$ as above, consider the finite diagram of spaces

$$\underline{\mathbf{X}} = \{\mathbf{X}_{\mathbf{P}}\}_{\mathbf{G}/\mathbf{P} \in \operatorname{sk} \mathscr{R}_{p}(\mathbf{G})}, \quad \text{where } \mathbf{X}_{\mathbf{P}} = \operatorname{map}(\mathbf{BP}, \mathbf{BH}_{p}^{\wedge})_{i \circ f|_{\mathbf{BP}}}.$$

By cosimplicial replacement (see [BK, XI, $\S 5$]) we obtain a cosimplicial space Y^{\bullet} , with

$$\mathbf{Y}^n = \prod_{\mathbf{G}/\mathbf{P}_{i_0} \to \cdots \to \mathbf{G}/\mathbf{P}_{i_n}} \mathbf{X}_{\mathbf{P}_{i_0}}$$

(where the product, over all possible sequences of n composable morphisms in $\mathrm{sk}\,\mathscr{R}_p(\mathbf{G})$, is finite), such that $\mathrm{holim}_{\mathrm{sk}\mathscr{R}_p(\mathbf{G})}\{\mathbf{X_P}\}\cong\mathrm{Tot}\,\mathbf{Y}^{\bullet}$.

Now if \mathbf{Z}^{\bullet} is the cosimplicial replacement of the analogous infinite diagram of $\mathbf{X}_{\mathbf{P}}$'s for the full category $\mathscr{R}_p(\mathbf{G})$, then the equivalence of categories $\mathrm{sk}\,\mathscr{R}_p(\mathbf{G})\hookrightarrow\mathscr{R}_p(\mathbf{G})$ (with noncanonical inverse $\mathscr{R}_p(\mathbf{G})\to\mathrm{sk}\,\mathscr{R}_p(\mathbf{G})$) induces a homotopy equivalence Tot $\mathbf{Y}^{\bullet}\stackrel{\sim}{\to} \mathrm{Tot}\,\mathbf{Z}^{\bullet}$, so that up to homotopy the natural map of (2) above is the inclusion of one component in Tot \mathbf{Y}^{\bullet} :

$$\operatorname{map}(\mathbf{BG}, \mathbf{BH}_p^{\wedge})_{i \circ f} \hookrightarrow \underbrace{\underset{\mathscr{R}_p(G)}{\operatorname{holim}}} \{\mathbf{X}_{\mathbf{P}}\} \simeq \operatorname{Tot} \mathbf{Y}^{\bullet}.$$

We choose a basepoint $y_0 \in \text{Tot } Y^{\bullet}$ corresponding to the map $i \circ f$.

4.1. Lemma. For any $f: \mathbf{BG} \to \mathbf{BH}$, the space $\max(\mathbf{BG}, \mathbf{BH}_p^{\wedge})_{i \circ f}$ is p-complete and \mathbb{F}_q -acyclic for $q \neq p$.

Proof. Consider the Bousfield-Kan spectral sequence for Y^{\bullet} as above (more precisely, for the component of y_0 in Tot Y^{\bullet} (cf. [B2, §2])) with $E_2^{s,t} \cong \pi^s \pi_t Y^{\bullet}$.

For $t \geq 2$, the construction of \mathbf{Y}^{\bullet} and Remark 3.2 imply that $\pi_t \mathbf{Y}^s \in \mathscr{F}$ and all the cosimplicial morphisms of $\pi_t \mathbf{Y}^{\bullet}$ are \mathbb{Z}_p^{\wedge} -linear by Lemma 2.3(b); hence $E_2^{s,t} \in \mathscr{F}$. For t=1, $E_2^{0,1}$ is a subgroup of $\pi_1 \mathbf{Y}^0 \cong \prod \pi_1 \mathbf{X}_{\mathbf{P}}$, and so is itself a finite p-group by Remark 3.2.

Moreover, if $t \geq 2$, the differentials $d_r: E_r^{s,t} \to E_r^{s+r,t+r-1}$ are homomorphisms, and thus \mathbb{Z}_p^{\wedge} -linear, for $t > s \geq 0$. Therefore, $E_r^{s,t} \in \mathscr{F}$ for $r \leq \infty$,

if $t > s \ge 0$ or $t = s \ge r$. For t = 1 we have $E_r^{0,1} \subseteq E_{r-1}^{0,1} \subseteq E_2^{0,1}$ (cf. [B2,

§2.4]), so $E_r^{0,1}$ is a finite *p*-group. Since $E_2^{s,t} \cong \varprojlim_{\mathcal{R}_p(G)} {}^s \pi_t \underline{\mathbf{X}}$ by [BK, XI, 7.1], Lemma 4.2 below, applied to the functors

$$\pi_t(\mathbf{EG} \times_{\mathbf{G}} -) : \mathscr{R}_p(\mathbf{G}) \to \mathbb{Z}_p^{\wedge}\text{-Mod}$$
,

shows that there is an N such that $E_2^{s,t} = 0$ for s > N and $t \ge 2$.

This in turn implies the complete convergence of the spectral sequence (see [B2, §4.5]): thus, for each $t \ge 1$ there is a finite tower of epimorphisms

$$\pi_t(\operatorname{Tot} \mathbf{Y}^{\bullet}, y_0) \cong Q_N \pi_t \twoheadrightarrow \cdots Q_s \pi_t \twoheadrightarrow Q_{s-1} \pi_t \twoheadrightarrow \cdots Q_0 \pi_t \twoheadrightarrow Q_{s-1} \pi_t = 1$$

where $Q_s \pi_t = \operatorname{im}\{\pi_t(\operatorname{Tot} \mathbf{Y}^{\bullet}, y_0) \to \pi_t(\operatorname{Tot}_s \mathbf{Y}^{\bullet}, y_0)\}$ (cf. [BK, IX, §5.3]), and for each $s \ge 0$ there is a short exact sequence

$$1 \to E_{\infty}^{s,s+t} \to Q_s \pi_t \to Q_{s-1} \pi_t \to 1$$
.

Now for $t \ge 2$ we have $E^{s,s+t}_{\infty} \in \mathscr{F}$. Therefore, Lemma 2.3(a) implies (by induction on s) that $Q_s \pi_t \in \mathscr{F}$ for all s, and so $\pi_t(\text{Tot } Y^{\bullet}, y_0)$ is in \mathscr{F} , too. For t = 1 we obtain a finite normal series

$$0 = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_N \triangleleft G_{N+1} = \pi_1(\operatorname{Tot} \mathbf{Y}^{\bullet}, y_0),$$

where $G_i/G_{i-1}=E_{\infty}^{N-i+1,\,N-i+2}$ is in $\mathscr F$ for $1\leq i\leq N$ and $G_{N+1}/G_N=E_{\infty}^{0,\,1}$ is a finite *p*-group. Thus Corollary 2.2 applies, and the component of y_0 in Tot Y^o is p-complete, and \mathbb{F}_q -acyclic for $q \neq p$. \square

The following lemma appeared in an earlier version of [JMO].

4.2. **Lemma.** If G is any compact Lie group and p a prime, there is an Nsuch that for any contravariant functor

$$F: \mathscr{R}_p(\mathbf{G}) \to \mathbb{Z}_p^{\wedge}\text{-}\mathrm{Mod}$$

we have $\varprojlim_{\mathscr{R}_p(G)}^s F = 0$ for s > N.

Proof. The homotopy direct limit $E\mathscr{R}_p(\mathbf{G}) = \underset{\mathbf{M}_p(G)}{\operatorname{holim}}\mathscr{R}_p(G)$ is a G-space, and $\underline{\text{holim}}_{\mathcal{R}_p(G)}^s F \cong H_{\mathbf{G}}^s(E\mathcal{R}_p(\mathbf{G}); F)$ for all $s \geq 0$ by [JMO, Theorem 1.7]. Here $H_{\mathbf{G}}^{*}(-; F)$ denotes equivariant cohomology with the functor F as coefficient system (see [I, 2.2]).

By [JMO, Proposition 1.2, Theorem 2.14], there exists a finite dimensional **G**-complex **X** with finitely many orbit types and a G- \mathbb{F}_p -isomorphism $f: \mathbf{X} \to \mathbb{F}_p$ $E\mathscr{R}_p(\mathbf{G})$; that is, a **G**-equivariant map f such that $f^{\mathbf{H}}: \mathbf{X}^{\mathbf{H}} \to (E\mathscr{R}_p(\mathbf{G}))^{\mathbf{H}}$ is an $H_{\star}(-; \mathbb{F}_p)$ -isomorphism on H-fixed point sets for any $H \subseteq G$.

Since each $H_k((E\mathscr{R}_p(G))^H; \mathbb{Z})$ is finitely generated (see [JMO, Proposition 1.1]), $f^{\mathbf{H}}$ is in fact an isomorphism in \mathbb{Z}_p^{\wedge} -homology for each \mathbf{H} , and therefore f is a $G-\mathbb{Z}_p^{\wedge}$ -homology isomorphism; by [JMO, A.13] this implies that $H^{\star}_{\mathbf{G}}(E\mathscr{R}_{p}(\mathbf{G}); F) \cong H^{\star}_{\mathbf{G}}(\mathbf{X}; F)$ for any \mathbb{Z}_{p}^{\wedge} -module valued coefficient system.

Now one can filter X by G-skeleta $X_0 \subset X_1 \subset \cdots \subset X_i \subset \cdots \subset X_k = X$ so that X_i/X_{i-1} contains a single orbit type G/P_i . If N is the dimension of X, by induction on the X_i one then shows (as in the proof of [JMO, A.13]) that $H_{\mathbf{G}}^{s}(\mathbf{X}; F) = 0 \text{ for } s > N. \square$

5. The homotopy equivalence

For a connected compact Lie group H, consider the arithmetic square

(3)
$$\begin{array}{ccc}
\mathbf{BH} & \xrightarrow{i} & \mathbf{BH}^{\wedge} \\
\downarrow j & & \downarrow j' \\
\mathbf{BH}_{\mathbb{Q}} & \xrightarrow{i_{\mathbb{Q}}} & (\mathbf{BH}^{\wedge})_{\mathbb{Q}}
\end{array}$$

(see [BK,VI, 8.1]), where $X^{\wedge} = \prod X_p^{\wedge}$ is the product over all primes p of the p-completions and $X_{\mathbb{Q}}$ is the \mathbb{Q} -localization.

Without loss of generality, $i_{\mathbb{Q}}$ is a fibration and (3) is a pullback diagram, so both horizontal maps have the same fiber \mathbf{F} . Since \mathbf{H} is compact and $\mathbf{BH}_{\mathbb{Q}}$, $(\mathbf{BH}^{\wedge})_{\mathbb{Q}}$ are rational H-spaces, they are even-dimensional rational GEMs (that is, products of even-dimensional rational Eilenberg-Mac Lane spaces) and \mathbf{F} is an odd-dimensional rational GEM.

For any map $f : \mathbf{BG} \to \mathbf{BH}$ (where G is a compact Lie group), (3) induces another pullback diagram

$$(4) \qquad \qquad \operatorname{map}(\mathbf{BG}, \mathbf{BH})_{f} \longrightarrow \operatorname{map}(\mathbf{BG}, \mathbf{BH}^{\wedge})_{i \circ f}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{map}(\mathbf{BG}, \mathbf{BH}_{\mathbb{Q}})_{j \circ f} \longrightarrow \operatorname{map}(\mathbf{BG}, (\mathbf{BH}^{\wedge})_{\mathbb{Q}})_{j' \circ i \circ f}$$

As for any compact Lie group, $H^{2k-1}(\mathbf{BG};\mathbb{Q})=0$ for all $k\geq 1$ (cf. [Bo, Theorem 19.1]). Since $\mathbf{F}\simeq\prod\mathbf{K}(\mathbb{Q},2r_i-1)$ is an odd-dimensional rational GEM, map(BG, F) is an odd-dimensional rational GEM, too, by a direct calculation of its homotopy groups. In particular, map(BG, F) is connected, and \mathbb{F}_p -acyclic for any prime p.

Thus map(BG, F) is the fiber of $map(BG, BH_Q)_c \rightarrow map(BG, (BH^{\wedge})_Q)_c$, where c is the constant map. Because BH_Q is an H-space and i_Q is an H-map, this is in fact the fiber for *all* components and thus for the two horizontal maps in (4).

Therefore, applying the q-completion functor to the top fibration sequence in the diagram

$$map(BG, F) \rightarrow map(BG, BH)_f \rightarrow map(BG, BH^{\wedge})_{i \circ f}$$

we get another fibration (by [BK, II, 5.2]):

$$\operatorname{map}(\mathbf{BG},\,\mathbf{F})_q^\wedge \to (\operatorname{map}(\mathbf{BG},\,\mathbf{BH})_f)_q^\wedge \xrightarrow{g} (\operatorname{map}(\mathbf{BG},\,\mathbf{BH}^\wedge)_{i \circ f})_q^\wedge\,,$$

with g a homotopy equivalence (since the fiber is contractible).

Finally, Lemma 4.1 implies that $(\mathbf{map}(\mathbf{BG}, \mathbf{BH}_p^{\wedge})_{i \circ f})_q^{\wedge}$ is homotopy equivalent to $(\mathbf{map}(\mathbf{BG}, \mathbf{BH}_p^{\wedge})_{i \circ f})$ for q = p, and is contractible for $q \neq p$, so we get the desired homotopy equivalence

$$(\operatorname{map}(\mathbf{BG}, \mathbf{BH})_f)_p^{\wedge} \stackrel{\cong}{\to} \operatorname{map}(\mathbf{BG}, \mathbf{BH}_p^{\wedge})_{i \circ f}$$
.

This completes the proof of Theorem 1.1. \Box

REFERENCES

- [Bo] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115-207.
- [B1] A. K. Bousfield, The localization of spaces with respect to homology, Topology 14 (1975), 133-150.
- [B2] _____, Homotopy spectral sequences and obstructions, Israel J. Math. 66 (1989), 54-104.
- [BK] A. K. Bousfield and D. M. Kan, *Homotopy limits, completions, and localizations*, Lecture Notes in Math., vol. 304, Springer-Verlag, Berlin and New York, 1972.
- [CE] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, NJ, 1956.
- [DZ] W. Dwyer and A. Zabrodski, Maps between classifying spaces, Algebraic Topology (Barcelona 1986), Lecture Notes in Math., vol. 1298, Springer-Verlag, Berlin and New York, 1989, pp. 106-119.
- [Ha] D. K. Harrison, Infinite abelian groups and homological methods, Ann. of Math. (2) 69 (1959), 366-391.
- [HS] P. J. Hilton and U. Stammbach, A course in homological algebra, Springer-Verlag, Berlin and New York, 1971.
- [I] S. Illman, Equivariant singular homology and cohomology. I, Mem. Amer. Math. Soc. 156 (1975).
- [JMO] S. Jackowski, J. E. McClure, and R. Oliver, Homotopy classification of self-maps of BG via G-actions, Aarhus Universitet Preprint Series, vol. 25, 1990.
- [N1] D. Notbohm, Maps between classifying spaces, Math Z. 207 (1991), 229-257.
- [N2] _____, Maps between classifying spaces and applications, Math. Gott. Heft 20 (1991).
- [NS] D. Notbohm and L. Smith, Fake Lie groups and maximal tori. I, II, Math. Ann. 288 (1990), 637-661, 663-673.

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS 60208

Current address, D. Blanc: Department of Mathematics, The Hebrew University, 91904

Jerusalem, Israel

Current address, D. Notbohm: SFB 170, Mathematisches Institut, 3400 Göttingen, Germany