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PERIODIC ORBITS AND THE CONTINUITY
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(Communicated by Charles Pugh)

Abstract. The main result is that an annulus homeomorphism homotopic to

the identity either has a well-defined and continuous assignment of rotation

numbers on its chain recurrent set or there exists an interval of rotation num-

bers and periodic points corresponding to each reduced rational number in the

interval. As a corollary, rotational discontinuities force the mapping to admit

periodic points of all sufficiently large periods n . In a related result, we provide

a criterion for the rotation set of an annulus homeomorphism to be nowhere

dense.

For homeomorphisms /: A —► A of the annulus that are homotopic to the
identity, the rotation behavior can be predicted from the behavior on individual

chain components. A very strong result along these lines, due to Franks [FI],

asserts that if a compact chain transitive set A has points x and y with distinct

rotation numbers a and ft, then the given map / has, corresponding to each

reduced rational p/q in the interval (a, fi), a periodic orbit of period q. In
this paper we will explore the opposite situation of rotational simplicity, which,

as we shall shortly see, forces the mapping that assigns a rotation number to

each point to be well defined and continuous on the full chain recurrent set

91(f) of the given homeomorphism. In fact, in this note we shall prove the
following:

Theorem. Let /: A —> A be a homeomorphism of the annulus, homotopic to the

identity map. Let 91 denote the chain recurrent set of f. Suppose that the set
of rotation numbers of periodic orbits of f is nowhere dense. Then the rotation

number function p: 92 —► S1 is well defined and continuous.

In fact, when the rotation mapping is either ill defined or discontinuous,

there are periodic orbits having all periods with the possible exception of some
finite set of natural numbers (see the corollary following the proof). The reader

should note that when one ranges outside the chain recurrent set, the rotation

mapping often fails to be continuous due to the proximity of basins of attraction
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of periodic orbits (or invariant circles) with different rotation numbers. I would

like to thank Marcy Barge for a helpful discussion concerning the corollary and

the referee for a number of good suggestions.

Before passing on to the proof of the theorem, we shall need some ideas and

terminology concerning rotation numbers and pseudo-orbits or e-chains as they

are called in [C]. Fix e > 0. An e-pseudo-orbit is an infinite sequence of points

{zk} in A such that for all k > 0, d(zk+x, f(zk)) < e . An e-chain of length
n from x = zo to y = z„ is a sequence {zk} with k = 0, 1, 2, ... , n such

that for all 0 < k < n , one has d(zk+x, f(zk)) < e .
We shall also need to review the definition of the chain recurrent set of the

mapping /: A -> A. We say that x is chain equivalent to y if for each e > 0

there exists an e-chain from x to y and an e-chain from y to x. The point

x is called chain recurrent if x is chain equivalent to itself. The chain recurrent

set of / is the set of all chain recurrent points, which we shall denote by the

symbol 92 . The relation of chain equivalence is, in fact, an equivalence relation

defined on the set 92 [C]. The resulting equivalence classes are called the chain

transitive components of 92 . A chain transitive set is simply a subset of some

chain transitive component.

If {zk} is an e-chain then we can choose lifts zk of the points zk such

that the set of points zk forms an e-pseudo-orbit for some lift F: A —> A of

/ defined on the covering space A = Rx[0,l], Now define p{zk} to be

the closed interval of all accumulation points of the sequence {n(zk)/k} where

n: A —> K denotes the projection onto the first factor of the covering space.

If we want to speak of the "true" rotation set of a point x £ A, we define

p(x) = p{fk(x)}. If the set p(x) is a single number then we say that x has

a rotation number. The rotation number mapping is the real-valued function

x h-> p(x) whose domain will always be some specified subset of points having

a rotation number.

Finally, for a compact /-invariant set A, define the rotation set of A,
p(f, A), consisting of all rotation numbers of points of A. We shall also

assume that all rotation numbers have been reduced modulo one, although that

is not at all essential in this paper. The proof of the main theorem will require

three lemmas.

Lemma 1. Let R(x) denote the chain transitive component of an element x in

A. Then lims\xoy^xR(y) c R(x). That is, for e > 0 and y sufficiently close

to x, it follows that R(y) c R(x).

Proof omitted. This result holds in any compact metric space, is straightforward,

and is essentially in the paper [C].   □

We remark here that this result is particularly obvious if one uses the equiv-

alent definition, advocated by Franks [F2], of e-chains in which one allows

chains consisting of e/2 "jumps" at the beginning and end with a traditional

(Conley) e-chain in between.

Lemma 2. Let R denote a chain transitive component of an annulus homeomor-

phism f isotopic to the identity. If the rotation set of f\p_ is not a singleton,

then the rotation set of f is somewhere dense, i.e., contains an interval.

Proof. This is found in Franks [FI, Corollary 2.4, p. 103].    □
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Lemma 3. Suppose that f: A —> A is isotopic to the identity with a lift F: A ->

A. Let A denote a compact invariant set that lifts to A c A. // p(F|~) is

contained in [a, b], then for each e > 0 there exists a 8 > 0 such that each

orbit lying in a 8-neighborhood of A has its rotation set in [a - e, b + e].

While this result is essentially Lemma 3.4 from [BS], we provide the following

self-contained proof suggested by the referee:

Proof. Define cf(8, A) to be the set of orbits contained in the (5-neighborhood

of A. For 8 > 0 let M denote the longest string of indices 1 < n < M in

any sequence {p„} 6 cf(8, A) for which (p„ - Po)\/n > b + e . We claim: F

is finite. If not, then by compactness of A and periodicity of the lift, there

is an F-orbit in A such that (Fn(p) - p)x/n > b + e for all n £ N. Thus

p{Fn(p)} > b + e, a contradiction.

For n > M and an arbitrary orbit {F"(po)} £ cf(8, A), choose kx , n-M <

kx < n , such that (F"(po) - Fk](po))x/(n - kx) < b + e . To simplify notation

put pn =Fn(p0), for n >0.

Repetition results in a sequence kx > k2> ■■■ > kr > 0 such that kt -kt+x <

M, kr<M, and (pkl -pk,+l)x/(k, - kt+x) < b + e. Then

{Pn ~Po)i < {Pn ~ Pkx)\ n - kx  | (pkr_t -pkr)\ rcf_i -kr     (pkr-Po)x

n        ~    n -kx        n kr_x - kr n n

<(b + e)({n-ki) + --' + {kr-i-kr))+{P^-poh<b + e + ^,
n n n

where the uniform bound K on (pk - p0)x, k < M follows from the uniform

continuity of F . Thus,

limsup^-^'^/3 + e.
n—>oo n

Similarly, the lim inf is > a - e .   □

We are now ready to give the proof of the main theorem stated above.

Proof of the theorem. From Lemma 2 the rotation set of any chain transitive

component R in 92 is a singleton. This means that the assignment x i-> p(x)

determines a function on 92 with values in S1 . To prove continuity, fix a point

x £ 92 and let y £ 92 converge to x. Choose e and 8 as in Lemma 3. By

Lemma 1, R(y) is eventually in any desired, say n-, neighborhood of R(x) for

y close enough to x . But, evidently, true orbits in R(y) are pseudo-orbits that

(5-shadow /]/?(*), for sufficiently small n . Now by Lemma 3, their (constant)

rotation sets p(x) and p(y) are within e.   D

Corollary. If the rotation number mapping does not define a continuous map on

92, then the period set of f, Per(/) = {n : / has a point of least period n}

contains all but finitely many numbers.

Proof. We know that there is a point of period q corresponding to each rational

number of the form p/q such that p, q are coprime and a < p/q < fi as in

the theorem. We need to establish that the set of numbers q that appears in
this fashion consists of all but finitely many natural numbers. This corresponds

to the following perfectly number theoretic proposition.
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Proposition 1. Given 0 < a < fi < oo, there exists a number N such that for

all n> N, the interval (a, fi) contains a rational p/n with p, n coprime, i.e.,
(P,n) = l.

Proof. For completeness we supply an elementary proof due to Barge and

Gillette (see [BG, Corollary 2.8]). We shall assume all fractions are written in

lowest terms. Suppose that [ax/bx, a2/b2] c (a, fi). Choose N large enough

so that if n > N and n = Y[ei=1pf is the prime factorization of n with

Pi <p2 < ■■ ■ <Pe then either pt > 2bxb2 or pf~x > 2bxb2 for some i. There
are two cases for such n .

(1) n = pf . If (s, n) £ 1 then (s - 1, n) = (s + 1, n) = 1. Hence,
every closed interval of length 2/n < l/bxb2 contains a fraction m/n with

(m, n) — 1.

(2) n = nLiP? » with (- > 2: In this case, if 5Y[l~lpf + 1 is not

relatively prime to n then both of the numbers (s - 1) ntT/ pf + 1 and

(5+1) Yl'Zi pf + 1 are. Thus, it follows that in every closed interval of length

L_2\t:!Pf=      2      , i

there is a fraction m/n with (m, n) = 1.

Thus, in every case, for all n > N there is a coprime pair m, n with m/n £

(a,fi).    □

Let ~ denote the equivalence relation of chain equivalence between two

points defined earlier in the paper. Suppose the quotient space 92 /~ is equip-

ped with the quotient topology. Then the projection n: 92 -> 92 /~ is contin-

uous. In fact, by Lemma 1, n is open and 92/~ is a compact metric space.

(For standard details see, for instance, [Du, p. 235].) If p : 92 -> S1 is constant
on chain transitive components R in 92 , then p: 92 /~ -> S1 is well defined

in the commutative diagram

92    —p-^ S1

n

92/-?—+ S1

and by the proof of the theorem, p and, therefore, p are continuous. (If

they are both well defined, they are continous or discontinuous together.) The

existence and properties of complete Lyapunov functions (e.g., [F2]) shows that

921~ is compact and totally disconnected. Thus, if p is continuous and 1-1,

then its homeomorphic image p(92/~) = p(92) must be compact and totally

disconnected in S1. Such subsets of the circle are, of course, nowhere dense.
We have proven

Proposition 2. Suppose the rotation mapping ~p is well defined and 1-1. Then

p(92) is compact and nowhere dense.

Remark. The reader may find it amusing to construct twist maps such that the

rotation map p is well defined and not 1-1, and yet the rotation set of

/ is S1 .
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