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MAJORIZATION AND DOMINATION IN THE BERGMAN SPACE

BORIS KORENBLUM AND KENDALL RICHARDS

(Communicated by Theodore W. Gamelin)

Abstract. Let / and g be functions analytic on the unit disk and let || • ||

denote the Bergman norm. Conditions are identified under which there exists an

absolute constant c , with 0 < c < 1 , such that the relationship \g(z)\ < \f(z)\

(c<\z\<l) will imply ||*|| < ll/H .

1. Introduction

Let C denote the complex plane, D the open unit disk, and L2(D) the

Hilbert space of all measurable functions /: D -> C with

\\f\\2 = ^ f\f\2dm<oo,
71 Jo

where dm denotes the Lebesgue area measure. The Bergman space A2 is

defined to be the subspace of L2(B>) consisting of functions analytic on D.

Let / and g be analytic on D. We say g is majorized by / on a region

/{CD if \g(z)\ < \f(z)\ for all z g R. By the positivity of dm, if g is
majorized by / on 0 then certainly

(1) llefll   <   11/11-

What other cases of majorization will imply (1)? In particular, when does

majorization on an annulus imply (1)? That is, we investigate the existence of

an absolute constant c, with 0 < c < 1 , such that if

(2) \g(z)\ < |/(2)|        (c<|z|<l)

then

(3) ||*|| < 11/11.
In the case that either function is a monomial z" , it has been shown (see

[3]) that (2) implies (3) for any c < l/y/3.
For arbitrary / and g analytic on D, let Zf and Zg denote the zero

sets (counting multiplicity) of / and g, respectively. If Zf\Zg is empty,

then (2) implies (3) for any c £ (0, 1), by the classical maximum principle.
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Furthermore, it is known (see [1]) that when Zg\Zj is empty (2) will again

imply (3) for c< \/(2e2).
We seek conditions under which majorization on an annulus of inner radius

c £ (0, 1) will imply (3), without requiring either relative complementary zero

set to be empty. We will show that such a c exists when Zg\Zf and Zf\Zg

are separated by an annulus.

2. Preliminary results

First we present some definitions and preliminary facts that will be appealed

to throughout this article (see [1, 2]). Let H°° be the space of all bounded

analytic functions on D, with

HftlU = sup{|A(z)| \z £ D}.

For G, F £ L2(B), we say that G is dominated by F if \\Gh\\ < \\Fh\\ for
all h £ H°°, and we write G -< F. It follows that if G -< F and G, F g
L°°(B), then \\Gh\\ < \\Fh\\ for all h £ A2. The following properties are direct
consequences of the definition of domination.

Property 1. If G, F G L2(D) and G < F, then G o 0 -< F o 0 for all Mobius
transformations 4> on D.

Property 2. If G,, F, G H°° and G, < F, for i= 1, ... ,n, then

(GxG2,...,Gn)<(FxF2,...,Fn).

We denote Ba(z) = a(a-z)/[\a\(\-az)] for a £ D, a /0,and B0(z) = -z.

Proposition 1. Let a £ D and y > 0. Then

(4) \Ba\7W+\a\)/il-m^\z\7t

and

(5) exp{-2y(l + *)/(l-z)H|z|'.

Corollary 1. Let a£B and define a= (l-|a|)/(l + |a|), /J = (l + \a\)/(l-\a\).

Then \z\? <Ba< \z\a.

(Proposition 1 is proved in [2] while Corollary 1 follows from (4) and Prop-

erty 1.)

Corollary 2. Let B(z) = Y[^=l Bak(z), \ak\ < 1, and let

"tarn**)-
where N < oo and [•] denotes the greatest integer function. Then \z\P -< B .

Proof. By Corollary 1, we have for each k  that  |z|^* -< Bak  where   Bk =

(1 + |flfc|)/(l - \ak\). Since Bk < ([Bk] + 1), we have

(6) zW^<Bak.

Since both sides of (6) are in H°° , we can apply Property 2 for k - 1, ... , N,

which yields |z|^ -< B . This proves the corollary.   □
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Proposition 2 (see [1]). Suppose G £ H°°, ||G||oo < I, and G(z) ^ 0 for all

z£B. If \G(0)\ < e~2y for y>0, then G ■< \z\*.

Proof. We have

G(z) = kexpl-j  ^dp(C)\,

where dp is a positive Borel measure on dB, with p(dD) = - log \G(0)\ > 2y,

and |a.| = 1. Let n = p(dB). Using the generalized arithmetic-geometric mean
inequality combined with the Fubini Theorem and (5), we obtain for all h £ A2

[ \Gh\2dm=  i exp I -2rj [** Re e~^- • d^-1 \h(z)\2 dmz
Jo Jo       {       Jo        elt - z      t]    J

<   I \z\i\h(z)\2 dm < f \z\2y\h(z)\2 dm.   u
Jo Jo

3. Main results

Theorem 1. Let G £ H°° be such that WG^ < 1 and G(z) ^ 0 for all \z\ < c
for some c£(0, 1). //|C7(0)| < (c(1+c)/(»-c))'' for some y>0, then G-< |z|>\

(It is interesting to note that Proposition 2 is the limiting case of Theorem

1 since c(1+c)/(1-c) -» e~2 as c —* 1~ .) We postpone the proof of Theorem

1 until the end of the article. Once this theorem is proved, we can obtain the

following results.

Theorem 2. Let B(z) = Fj£Li B0k(z), where \ak\ < c < \ . Suppose G £ H°°,
\\GWoo <\,and G(z) ± 0 for all \z\ < d, with d>c. If

\G(0)\ < (d^x+dW-^)2N,

then G^B.

Proof. We have that G -< \z\2N, by Theorem 1. Since \ak\ < -j , it follows that

>-S([£J2H-™
Thus, \z\2N -< B, by Corollary 2. Therefore, G -< \z\2N -< B, which proves the
theorem.   □

Theorem 3. Let f, g £ A2. There exists an absolute constant en, with 0 <

Co < 1, such that for any c < en, if

(i) \g(z)\ < \f(z)\  (c<|z|<l) and
(ii) Zg\Zf c{z£ D|c'/3 < |z| < 1},

then g< f.
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Proof. Let B be the finite Blaschke product

N

b=n b«k >   wnere iak}k=\=zAzg-
k=\

Note that (i) implies |a*| < c for k = 1, ... , TV. Consider the function

G = gB/f. It follows that G £ H°° , ||G||oo < 1, and (?(z) ^ 0 for |z| < c1/3.
Also, on |z| = c, we have

|G(z)| < \B(z)\ < (2c)N.

The classical maximal principle implies that |G(0)| < (2c)N . Letting d = c1/3,
it follows that 2c < ^(l+rfj/o-d) for c < 0.0021 = c0 . Thus,

|G(0)| < (dV+Wd-d^N

and G(z) ^ 0 for all |z| < d. Applying Theorem 2, we have G -< B or

||G/2|| < ||fi/?|| for all h £ A2. Taking A = hxf/B, with hx £ H°°, we have

*-</•   D

Corollary 3. Le? / and g be analytic on D. T/jere exwte an absolute constant

Co, with 0 < Co < 1, such that for any c <co, if

(i) \g(z)\ < \f(z)\  (c<|z|<l) and
(ii) Z?\Z/c{zgD|c'/3<|z|< 1},

then \\g\\< ll/H.
Proof. If ll/H = oo, then there is nothing to prove. Thus we can assume that

f £ A2, which implies g £ A2 by (i). Applying Theorem 3, we have g < f
and, in particular, ||g|| < ||/||.   □

Notice that (i) and (ii) together imply that Zg\Zf is separated from Zf\Zg

by the annulus {z G D|c < \z\ < c1/3} .

Proof of Theorem 1. Let F = G/B where B = Y[k=i %ak and {^}f=1 = ZG
(M < oo). Applying (4), we have for X, y > 0

(7) \Bak\x^^\z\^

where ak — (1 + |flit|)/(l - \ak\). Since F has no zeros in D and H-FHoo < 1 ,

we can define the analytic function p = F2Xy/iog(i/\F{0)\) that satisfies HF^ < 1

and |F(0)| = e~Uy. Thus, we can apply Proposition 2 to F yielding

(8) F<\z\x\

Now let h £ H°° . We have

2

(9) f\Gh\2dm= f \[Bak(z)   \F(z)h(z)\2dm
Jo Jo   .

(10) = / J](|fiaJz)|2A',a*)1/^Q*)(|F(z)|2)(lo81/lf(0)l)/2A)'|/?(z)|2^m,

Jo k

where we choose
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For this X, we can apply the arithmetic-geometric mean inequality to (10) to
obtain

/jO*^m<Ex^X(l^r«l*W|)2^

Applying (7) and (8), it follows that

/j^-.[e(^)+^«]/j^Wp^

=  [ \z\2k'\h(z)\2dm,
Jo

by the above choice of X. We will show that X > 1. Once this is done, it
follows that

f \Gh\2dm< j \z\2y\h(z)\2dm,
Jo Jo

which is the desired result. To see that X > 1, first observe that

(11) |F(0)|]7>fcl = l^(0)5(0)| = |G(0)| < c^+^'-O,
k

where the last inequality follows by hypothesis. This'implies

(12) I±f,ogI< I Wlog^Uilog-^.
\-c      c     y^\     \ak\)    7      W(0)\

It can be shown that the function tp(r) = {37log} is decreasing and c/>(r) > 2

on (0, 1). We have, by assumption, that 1^1 > c and thus, <^(\ak\) < </>(<;) for
all k. This yields

,'  <(|^)i±£l08i = ±(i±£l0gi).
\ik\      \1 + 1**1/ 1-c      c     ak \\ -c      c)

This, together with (12), implies

1+c,     1      1 [^ / 1 \ 1 + c ,     1     , 1

T^108^ ~y \L UJ —cX°K +l0g|FW.

or

l[r,m 2(1-0        i, 1
- 7 [^ UJ + (l+c)logl/c'2 °8|F(0)|

where the last inequality is a consequence of 4>(c) > 2. This completes the

proof of the theorem.   □
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