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A GENERALIZATION OF THE
PUNCTURED NEIGHBORHOOD THEOREM

WOO YOUNG LEE

(Communicated by Palle E. T. Jorgensen)

Abstract. If T e Jz*(X) is regular on a Banach space X , with finite- dimen-

sional intersection T-1 (0) n T(X), and if S , S' are invertible, commute with

T and have sufficiently small norm, then dim(7"-S')_1(0) — dim(r-5')_1(0)

and dimX/{T - S')X = dim*/(r - S)X .

In [5], Lee proved that if T is a regular operator with some finite-dimensional

intersection property on a Banach space and if 0 is the boundary of the spectrum

of T, then 0 is an isolated point of the spectrum of T.

In this note we derive a generalization of the punctured neighborhood theo-

rem and then strengthen the above result.

Throughout this note suppose X and Y are complex Banach spaces, write

2C(X, Y) for the set of bounded linear operators from X to Y, and abbreviate

&(X,X) to &(X). If T £ &(X) then we write a(T) for the spectrum of

T. If K is a compact subset of the complex plane C, write dK and iso(AT),

respectively, for the topological boundary points and the isolated points of K ,
We recall that T £ Jzf(X, Y) is said to be bounded below if there is k > 0

for which \\x\\ < k\\Tx\\ for all x £ X and is said to be regular if there is
V £ S?(Y, X) for which T = TT'T. It is known that T is regular if and
only if T(X) is closed and both T~x(0) and T(X) are complemented and that

(0.1) T regular and one-one => T bounded below =>• T(X) closed

(cf. [2, 3]). Recall, also, that T £ SP(X, Y) is said to be Fredholm if T~x(0)
and Y/T(X) are finite dimensional. If T £ Jz?(X, Y) is Fredholm then the
index of T is defined by

index(r) = dim T~x(0) - dim Y/T(X).

If T £ £?(X) then the hyperrange of T is the subspace

oo

Tco(X)= f]T"(X).

n=\

We begin with a modification of [2, Theorem 7.8.3]:
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Lemma 1. Let X be a normed space and T g £?(X). If the intersection

T~x(0)nTk(X) is finite dimensional for some k then

(1.1) T(T°°(X)) = T°°(X).

If S £ 2C(X) is invertible and commutes with T, then

(1.2) (T-S)~x(0)C T°°(X).

Proof. The proof of equality (1.1) is taken straight from a slight modifica-

tion of the proof of [2, (7.8.3.2)], which works with the stronger assumption

dimr_1(0) < oo. The inclusion (1.2) is just the inclusion [2, (7.8.3.4)].

Our main theorem is a generalization of the "punctured neighborhood theo-

rem."

Theorem 2. If T £ 3?(X) is regular on a Banach space X, with finite-dimen-

sional intersection T~x(0) n T(X), and if S, S' are invertible, commute with

T and have sufficiently small norm, then

(2.1) dim(r-5')-1(0) = dim(r-5)-1(0)

and

(2.2) dimX/(T-S')X = dimX/(T-S)X.

Proof. Suppose T £ S?(X) is regular and T~x(0)nT(X) is finite dimensional.

We begin by showing T°°(X) is complete. To do this, define Sx: X/T~x(0) ->
X by setting

Sx(x + T~x(0)) = Tx£X    for each xcX.

Then, by (0.1) Sx is bounded below. Our assumption also gives (with the aid

of [5, Lemma 1]) that the subspace T(X) + T~x(0) is closed in X. Further,

we can find a closed subspace W c T(X) for which

T(X) + T-x(0) = W + T'x(0)     and     T(X) = W ® (T~x(0) C\T(X)).

We can then regard W + T~x(0) = {w + T~x(0): w £ W} as a closed subspace

of X/T-x(0). If we define S2: W+T~x(0) -+Iby setting

S2(w + T~x(0)) = Tw £ X    for each w £ W,

then S2 is also bounded below (see [2, (3.11.1.2)]). Since W + T~x(0) is

complete, it follows from (0.1) that S2(W + T~x(0)) = T(W) = T2(X) is
closed in X . Inductively, we have that T"(X) is closed in X for each n £ N,

hence so is T°°(X); therefore, T°°(X) is complete. We write UA: T°°(X) -♦

T°°(X) for the operator induced by U £ comm(r), where comm(r) is the

"commutant" of T in S?(X). Then, since (TA)~X(0) = T~x(0)n T°°(X) C

r-'(0) n T(X) and, by (1.1), TA is onto, it follows that TA is Fredholm.
If S has sufficiently small norm then (T - S)A is also Fredholm because the

Fredholm operators on a Banach space form an open set. We now claim that

(2.3) dim(7' - S)~x(0) = dim(T - S)A~' (0) = index(T - S)A = index(rA).

The first equality comes from (1.2), the second equality comes from the fact

that, by the first equality and (1.1), (T - S)A is onto, and the third equality

comes from the continuity of the Fredholm index. Since the right-hand side of
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(2.3) is independent of S, equality (2.1) follows. Also applying the "classical"

punctured neighborhood theorem of T - S gives the equality (2.2).

Our proof of Theorem 2 closely follows the original argument of Harte [2,

Theorem 7.8.4], which assumes T is Fredholm.

The following result is an improvement of [5, Theorem 2]:

Corollary 3. If T £ S?(X) is regular on a Banach space X, with finite-dimen-

sional intersection T~x(0) n T(X), then there is implication

(3.1) 0£do(T)=>0£isoo(T).

Proof. Apply Theorem 2 to T - S with S = pi and 0 < \p\ < e; then
dim(T - XI)~x(0) and dimX/(T - XI)X are constant on a punctured neigh-

borhood of 0. If 0£da(T) then it follows that for some 9 with 0 < 6 < e,

dim(r - XI)~X(0) = dimX/(T - XI)X = 0 for 0 < \X\ < 0, which says that
OGisoff(r).

Recall that T £ S?(X) is said to be relatively almost open if its truncation

f: X -» T(X) is almost open (cf. [2, 4]). If T £ £?(X) for a Banach space X
then by the open mapping theorem we have

(3.2) T relatively almost open «■ T(X) closed.

In the context of a Hilbert space we can simplify Corollary 3. In a sense, the
following result is an improvement of [6, Theorem 1].

Corollary 4. If X is a Hilbert space and T £ Sf(X) is relatively almost open,

with finite-dimensional intersection T~x(0) n T(X), then there is implication

(4.1) 0£da(T)^0£isoa(T).

Proof. If T £ &(X) for a Hilbert space X then both T~x(0) and cl T(X)
are always complemented; thus we have

(4.2) T regular <* T(X) closed;

therefore, (3.1) together with (3.2) and (4.2) gives (4.1).
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