A GENERALIZATION OF THE PUNCTURED NEIGHBORHOOD THEOREM

WOO YOUNG LEE

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. If $T \in \mathcal{L}(X)$ is regular on a Banach space X, with finite-dimensional intersection $T^{-1}(0) \cap T(X)$, and if S, S' are invertible, commute with T and have sufficiently small norm, then $\dim(T-S')^{-1}(0) = \dim(T-S)^{-1}(0)$ and $\dim X/(T-S')X = \dim X/(T-S)X$.

In [5], Lee proved that if T is a regular operator with some finite-dimensional intersection property on a Banach space and if 0 is the boundary of the spectrum of T, then 0 is an isolated point of the spectrum of T.

In this note we derive a generalization of the punctured neighborhood theorem and then strengthen the above result.

Throughout this note suppose X and Y are complex Banach spaces, write $\mathcal{L}(X,Y)$ for the set of bounded linear operators from X to Y, and abbreviate $\mathcal{L}(X,X)$ to $\mathcal{L}(X)$. If $T \in \mathcal{L}(X)$ then we write $\sigma(T)$ for the spectrum of T. If K is a compact subset of the complex plane \mathbb{C} , write ∂K and $\mathrm{iso}(K)$, respectively, for the topological boundary points and the isolated points of K.

We recall that $T \in \mathcal{L}(X, Y)$ is said to be bounded below if there is k > 0 for which $||x|| \le k||Tx||$ for all $x \in X$ and is said to be regular if there is $T' \in \mathcal{L}(Y, X)$ for which T = TT'T. It is known that T is regular if and only if T(X) is closed and both $T^{-1}(0)$ and T(X) are complemented and that

(0.1) T regular and one-one $\Rightarrow T$ bounded below $\Rightarrow T(X)$ closed

(cf. [2, 3]). Recall, also, that $T \in \mathcal{L}(X, Y)$ is said to be *Fredholm* if $T^{-1}(0)$ and Y/T(X) are finite dimensional. If $T \in \mathcal{L}(X, Y)$ is Fredholm then the *index* of T is defined by

$$\operatorname{index}(T) = \dim T^{-1}(0) - \dim Y/T(X).$$

If $T \in \mathcal{L}(X)$ then the hyperrange of T is the subspace

$$T^{\infty}(X) = \bigcap_{n=1}^{\infty} T^n(X).$$

We begin with a modification of [2, Theorem 7.8.3]:

Received by the editors May 9, 1991.

1991 Mathematics Subject Classification. Primary 47A10.

Key words and phrases. Punctured neighborhood theorem, regular operators, spectrum.

Research supported in part by a grant from ADD in 1991.

108 W. Y. LEE

Lemma 1. Let X be a normed space and $T \in \mathcal{L}(X)$. If the intersection $T^{-1}(0) \cap T^k(X)$ is finite dimensional for some k then

$$(1.1) T(T^{\infty}(X)) = T^{\infty}(X).$$

If $S \in \mathcal{L}(X)$ is invertible and commutes with T, then

$$(1.2) (T-S)^{-1}(0) \subseteq T^{\infty}(X).$$

Proof. The proof of equality (1.1) is taken straight from a slight modification of the proof of [2, (7.8.3.2)], which works with the stronger assumption dim $T^{-1}(0) < \infty$. The inclusion (1.2) is just the inclusion [2, (7.8.3.4)].

Our main theorem is a generalization of the "punctured neighborhood theorem."

Theorem 2. If $T \in \mathcal{L}(X)$ is regular on a Banach space X, with finite-dimensional intersection $T^{-1}(0) \cap T(X)$, and if S, S' are invertible, commute with T and have sufficiently small norm, then

(2.1)
$$\dim(T - S')^{-1}(0) = \dim(T - S)^{-1}(0)$$

and

(2.2)
$$\dim X/(T-S')X = \dim X/(T-S)X.$$

Proof. Suppose $T \in \mathcal{L}(X)$ is regular and $T^{-1}(0) \cap T(X)$ is finite dimensional. We begin by showing $T^{\infty}(X)$ is complete. To do this, define $S_1: X/T^{-1}(0) \to X$ by setting

$$S_1(x + T^{-1}(0)) = Tx \in X$$
 for each $x \in X$.

Then, by (0.1) S_1 is bounded below. Our assumption also gives (with the aid of [5, Lemma 1]) that the subspace $T(X) + T^{-1}(0)$ is closed in X. Further, we can find a closed subspace $W \subseteq T(X)$ for which

$$T(X) + T^{-1}(0) = W + T^{-1}(0)$$
 and $T(X) = W \oplus (T^{-1}(0) \cap T(X))$.

We can then regard $W+T^{-1}(0)=\{w+T^{-1}(0):w\in W\}$ as a closed subspace of $X/T^{-1}(0)$. If we define $S_2\colon W+T^{-1}(0)\to X$ by setting

$$S_2(w+T^{-1}(0))=Tw\in X \quad \text{ for each } w\in W,$$

then S_2 is also bounded below (see [2, (3.11.1.2)]). Since $W+T^{-1}(0)$ is complete, it follows from (0.1) that $S_2(W+T^{-1}(0))=T(W)=T^2(X)$ is closed in X. Inductively, we have that $T^n(X)$ is closed in X for each $n \in N$, hence so is $T^{\infty}(X)$; therefore, $T^{\infty}(X)$ is complete. We write $U^{\wedge}: T^{\infty}(X) \to T^{\infty}(X)$ for the operator induced by $U \in \text{comm}(T)$, where comm(T) is the "commutant" of T in $\mathcal{L}(X)$. Then, since $(T^{\wedge})^{-1}(0) = T^{-1}(0) \cap T^{\infty}(X) \subseteq T^{-1}(0) \cap T(X)$ and, by (1.1), T^{\wedge} is onto, it follows that T^{\wedge} is Fredholm. If S has sufficiently small norm then $(T-S)^{\wedge}$ is also Fredholm because the Fredholm operators on a Banach space form an open set. We now claim that

(2.3)
$$\dim(T-S)^{-1}(0) = \dim(T-S)^{\wedge^{-1}}(0) = \operatorname{index}(T-S)^{\wedge} = \operatorname{index}(T^{\wedge}).$$

The first equality comes from (1.2), the second equality comes from the fact that, by the first equality and (1.1), $(T-S)^{\wedge}$ is onto, and the third equality comes from the continuity of the Fredholm index. Since the right-hand side of

(2.3) is independent of S, equality (2.1) follows. Also applying the "classical" punctured neighborhood theorem of T - S gives the equality (2.2).

Our proof of Theorem 2 closely follows the original argument of Harte [2, Theorem 7.8.4], which assumes T is Fredholm.

The following result is an improvement of [5, Theorem 2]:

Corollary 3. If $T \in \mathcal{L}(X)$ is regular on a Banach space X, with finite-dimensional intersection $T^{-1}(0) \cap T(X)$, then there is implication

$$(3.1) 0 \in \partial \sigma(T) \Rightarrow 0 \in \text{iso } \sigma(T).$$

Proof. Apply Theorem 2 to T-S with $S=\mu I$ and $0<|\mu|<\varepsilon$; then $\dim(T-\lambda I)^{-1}(0)$ and $\dim X/(T-\lambda I)X$ are constant on a punctured neighborhood of 0. If $0\in\partial\sigma(T)$ then it follows that for some θ with $0<\theta<\varepsilon$, $\dim(T-\lambda I)^{-1}(0)=\dim X/(T-\lambda I)X=0$ for $0<|\lambda|<\theta$, which says that $0\in\operatorname{iso}\sigma(T)$.

Recall that $T \in \mathcal{L}(X)$ is said to be *relatively almost open* if its truncation $\widehat{T} \colon X \to T(X)$ is almost open (cf. [2, 4]). If $T \in \mathcal{L}(X)$ for a Banach space X then by the open mapping theorem we have

(3.2)
$$T$$
 relatively almost open $\Leftrightarrow T(X)$ closed.

In the context of a Hilbert space we can simplify Corollary 3. In a sense, the following result is an improvement of [6, Theorem 1].

Corollary 4. If X is a Hilbert space and $T \in \mathcal{L}(X)$ is relatively almost open, with finite-dimensional intersection $T^{-1}(0) \cap T(X)$, then there is implication

$$(4.1) 0 \in \partial \sigma(T) \Rightarrow 0 \in \text{iso } \sigma(T).$$

Proof. If $T \in \mathcal{L}(X)$ for a Hilbert space X then both $T^{-1}(0)$ and cl T(X) are always complemented; thus we have

$$(4.2) T egular \Leftrightarrow T(X) ext{ closed};$$

therefore, (3.1) together with (3.2) and (4.2) gives (4.1).

ACKNOWLEDGMENT

The author would like to express his thanks to the referee whose suggestions led to an improvement of the paper.

REFERENCES

- 1. S. Goldberg, Unbounded linear operator, McGraw-Hill, New York, 1966. .
- R. Harte, Invertibility and singularity for bounded linear operators, Marcel Dekker, New York, 1988.
- 3. H. G. Heuser, Functional analysis, Wiley, New York, 1982.
- 4. W. Y. Lee, Relatively open mappings, Proc. Amer. Math. Soc. 108 (1990), 93-94.
- 5. ____, Boundaries of the spectra in $\mathcal{L}(X)$, Proc. Amer. Math. Soc. 116 (1992), 185–189.
- C. R. Putnam, The spectra of operators having resolvents of first order growth, Trans. Amer. Math. Soc. 133 (1968), 505-510.