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REFINEMENTS OF KY FAN'S INEQUALITY

HORST ALZER

(Communicated by Andrew M. Bruckner)

Abstract. We prove the inequalities

A'JG'n<(l-G'n)/(l-A'„)<An/Gn

and

A'JG'„ < (I - Gn)/(\ - An) < A„/Gn ,

where A„ and Gn (respectively, A'n and G'n) denote the unweighted arith-

metic and geometric means of xx, ... ,xn (respectively, I - xx,... , 1 - x„)

with x, € (0, j] (j = 1,... , n; n > 2). Further we show that the ratios

(l-G'n)/(\ -A'n) and (\ -G„)/(l—An) can be compared if and only if n = 2 .

1. Introduction

In 1961 the following remarkable inequality, due to Ky Fan, was published

for the first time in the well-known book Inequalities by Beckenbach and Bell-

man [3, p. 5]:

If A„ and G„ (respectively, A'n and G'n) denote the unweighted arith-

metic and geometric means of the real numbers xx, ... , x„ (respectively, 1 -

xx, •. • , l — xn), i.e.,

.     n n

A" = „zZx' and G» = l~lx!/n
i=\ i=l

(respectively, A'n = ±£?=,(1 ~x>) and G'n = Il"-i(l - xt)lln) , then we have

for all xt^ £ (0, \]   (i = 1, ... , n ; n > 2),

(1.1) G„/G'n<A„/A'n.

Equality holds in (1.1) if and only if xi = • • • = x„ .
Inequality (1.1) has evoked the interest of several mathematicians and many

papers have been published providing new proofs, noteworthy extensions, and

sharpenings as well as intriguing counterparts and variants; see [2] and the

references therein.

Among the different refinements of Fan's inequality we could not find one

presenting a sharpening of the equivalent inequality

(1-2) A'JG'n < An/Gn.
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The aim of this paper is to prove two refinements of inequality (1.2). In §2 we

establish that the ratios (l-G'n)/(l-A'n) and (1 -G„)/(\ - A„) both separate

the left-hand side and the right-hand side of (1.2). It is natural to ask whether

all four quotients can be included in a chain of three inequalities. This is indeed

possible if n — 2; but if n > 2, then the expressions (1 - G'n)/(\ - A'n) and

(1 -G„)/(l - A„) cannot be compared. These results will be proved in §3.

2. TWO REFINEMENTS

In the proof of Theorem 1 the following additive analogue of inequality (1.1)

plays a central role.

If x,■ £ (0, \]  (i=l,... ,n; n>2) then

(2.1) G„-G'n<An-A'„,

with equality holding if and only if xx — ■ ■ ■ - xn .
A proof for this proposition can be found in [1].

Theorem 1. If x, £ (0, \]  (i = 1,..., n; n> 2) then

(2.2) A'JG'n<(l-G'n)/(l-A'n)<An/Gn.

Equality is valid if and only if xx = ■■■ = x„.

Proof. The function f(x) = x(l-x) is strictly decreasing on [j , oo). Because

of \ < G'n < A'„ < 1, we obtain f(A'n) < f(G'„) with equality holding if and
only if all the x,'s are equal. This establishes the left-hand side of (2.2).

Since An + A'n = 1, we obtain from (2.1) that

(2.3) G„(l-G'n)<Gn(2An-Gn)<A2n,

which yields the second inequality of (2.2). If G„(l - G'n) = A2 then we
conclude from the right-hand inequality of (2.3): A„ = G„ ; hence xx = • ■ •
= x„.   a

Remark. From double-inequality (2.3) we get the following sharpening of the

right-hand side of (2.2):

(2.4) (1 - G'n)/(l -A'n)<2- Gn/An < An/Gn.

Equality is valid if and only if all the x,'s are equal. This is obvious for the

second inequality of (2.4), and since equality holds in (2.1) only if xx — ■■■

= x„ , the same is true for the first inequality of (2.4).

Theorem 2. // x,■ £ (0, \]   (i = 1, ... ,n; n> 2) then

(2.5) A'JG'n<(l-Gn)/(l-An)<An/Gn,

with equality holding if and only if xx = ■■■ = xn.

Proof. The validity of the second inequality follows immediately from 0 <

Gn < An < j and the fact that f(x) = x(l-x) is strictly increasing on (0, j].
To establish the left-hand inequality of (2.5) we define

g: [0,$]"-R,

g(xl,...,xn)=(i-f[xAno-xtvi»-(i-\izx\.
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Let a = (ax, ... , a„) £ [0, j]n be the absolute minimum of g. We prove

ax = ■■■ = a„ , which implies

g(xx, ... , xn) > g(ax, ... , ax) = 0   for all (xx,... , x„) G [0, \]n

with equality holding if and only if xx = ■ ■ ■ = xn .
If a is an interior point of [0, \]n , then we obtain

Vg(ai, ... ,an) = 0

such that «i, ... , a„ solve the equation

P(x) = -GnG'„(l - x) - (1 - G„)G'nx + 2(1 - 4,)jc(1 - x) = 0.

Since F is a polynomial of degree 2, we conclude from

F(0) < 0   and   2P(\) = 1 - G'n - An > 1 - A'„ - A„ = 0

that F has at most one zero on (0, \); hence ai = • ■ ■' = a„ .

Next we assume that a is a boundary point of [0, \]n . We consider two

cases.
Case 1. No component of a is equal to 0. Then / (> 1) components of a

are equal to \ . Without loss of generality, we may suppose

ak+x = ••• = a„ = j,        I <n-k = I <n- 1.

We define

h: [0,if-+R,

h(xx, ... , xk) = g (xx, ... , Xk, j , ■ ■ ■ , 2)

= I[l - \(2Gk)k'n](2G'k)kln - [\ + k {\ - Ak) /n}1.

Because of

(2.6) h(xx, ... ,xk)>h(ax, ... ,ak)   for all (xx, ... , xk) £ [6, \]   ,

we conclude that h attains its absolute minimum at a = (ax, ... , ak). Since

0 < a, < \ (i = 1, ... , k), we obtain Wh(ax, ... , ak) = 0, which implies that
ax, ... , ak solve the equation

Q(x) = \(4GkG'k)k'n(2x - 1) - x2(2G'k)k'nx

+ (-2kAk/n + 1 + k/n) x( 1 - x) = 0.

We have Q(0) < 0 and

(2.7) 4Qti) = -(2Gk)a-2Aka+l+a

with a - k/n £ (0, 1). If we designate the right-hand side of (2.7) by Q(a),

then Q is strictly concave on [0, 1] and, since Q(0) - 0 and

2(1) = 2(1 -Ak - G'k) > 2(1 -Ak-A'k) = 0,

we conclude

Q{\) = \Q{kln)>0.
Thus, Q has precisely one root on (0, 5), which leads to ax = ■ ■ ■ = ak . Now

we prove that the function

h(x) = h(x, ... , x)
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is strictly decreasing on [0, \\. This implies

h(ax,... , ak) = ~h(ax) >h (\) = h (\,..., \) ,

which contradicts inequality (2.6). Differentiation of h yields, for x G (0, j),

(2-8)^'w=Ki^"i)[4x(i-x)r-2^[2(i-x)r+i+Q-2Qx

with a = k/n £ (0, 1). We denote the right-hand side of (2.8) by p(a).
Differentiation of p leads to

p"(a) = (2x - l)[4x(l -x)]a-'[log(4x(l -x))]2

-[2(l-x)]a-'[log(2(l-x))]2<0.

Hence we obtain, for a £ (0, 1):

(2.9)        p'(a) > p'(l) = (2x - 1) log(4x( 1 - x)) - log(2( 1 - x)) + 1 - 2x\

We designate the right-hand side of (2.9) by q(x). Because of q"(x) > 0

for x £ (0, j) and q(\) = q'(\) = 0, we conclude p'(\) > 0. Therefore

p(a) < p(l) - 0 for a £ (0, 1), which proves that h is strictly decreasing on

[0,i].
Case 2. /   (> 1) components of a are equal to 0. We assume

ak+\ = • • • = o« = 0,        \<n — k = l<n—\,

and define

tp:  [0, if-+R,
k /       j   k     \2

tp(xx, ... ,xk) = g(xx, ... ,xk,0, ... , 0) = JJ(1 -Xj)l/n- I 1 --^xA   .
/=1 \ ;=1      /

We have, for j = I, ... , k,

j<pXj(Xi ,...,xk) = -2,ll_x)(G'k)a +\~aAk> -(G'k)a +\-aAk

with q = k/n £ (0, 1). Since the function

^(a) = -(G;r+l-a^

is strictly concave on [0, 1 ] and because of

yi(0) = 0   and   yi(l) =-G'k + I - Ak =-G'k + A'k > 0,

we obtain

yi(a) >0   foraG (0, 1).

Hence we have

<P(X\, ... ,xk) > tp(0, ... ,0) = 0   for all (x,, ... , xk) £ [0, ^]  .

Since tp attains its absolute minimum at a — (ax, ... , ak), we conclude ax =
... = ak = 0. This completes the proof of Theorem 2.    □

3. The case n = 2

In this section we prove that the ratios (1-G^,)/(1-^) and (l-G„)/(l-,4n)

can be compared if and only if n = 2.



REFINEMENTS OF KY FAN'S INEQUALITY 163

Theorem 3. If xx, x2 £ (0, j] then

(3.1) A'2/G'2 < (1 - G'2)/(\ -4) < (1 - G2)/(l - A2) < A2/G2,

with equality holding if and only if xx = x2.

Proof. It remains to establish the second inequality of (3.1). We define

/: [0,i]2^R,

f(x,y) = (1 - v^)^Z _ (i _ £+Z) (i _ v/O-xXl-y)) ,

and denote the absolute minimum of / by a = (ax, a2). We prove ax = a2.

If a is an interior point of [0, \]2 then we have

V/(ai,a2) = 0,

which leads to

-s/a2/axA2 + 2-G2-G'2- ^/(\ - a2)/(l - ax)A'2 = 0

and

-Ja~Ja2A2 + 2-G2-G'2- \/(l - ax)/(\ - a2)A'2 = 0.

From these equations we obtain

(A2/G2 - A'2/G'2)(ax - a2) = 0.

Suppose ax ^ a2. Then we get A2/G2 = A'2/G2, and from Fan's theorem we

conclude ax = a2.
Next we assume that a is a boundary point of [0, j]2. We distinguish two

cases.
Case 1. One component of a is equal to 0. If ax - 0 and a2 = z £ (0, j],

then we have

F(z) = f(0,z) = z-l + vT^ (l - |)

and

(3.2) 2vT^F'(z) = y - 2 + 2vT^7.

Since the right-hand side of (3.2) is increasing on [0, ^] we get, for zg(0, j],

F'(z)>0 and F(z)>F(0) = 0.

Case 2. Both components of a are different from 0. Let ax = \ and

a2 = z £ (0, 5]. Then we have

G(z) = 4/Q,z) = (l-y/|)(l+2z)-(3-2z)h-y/^y
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A simple calculation reveals

2a/2(1 - zfl2G"(z) = (^)3/2 (5 - 3z) + \ - 3z > 0   for z G (0, i

and

G(I) = G'(i)=0,

which implies

G(z)>0   forzG (0, \] ,

with equality holding if and only if z = 5 .   □

Now we show that for every n > 3 the ratios (1 - G'n)/(l - A'n) and

(1 - G„)/(l - An) cannot be compared. If we set Xi = • •• = x„_i = 0 and

xn = \ , then

(\-G'n)l(\-A'n)>(\-G„)l(\-An)

is equivalent to

((2n-2)/(2n-l))">{.

Since an = ((2n - 2)/(2n - 1))" is strictly increasing, we obtain, for n > 3,

an > "3 = -fjs > j-

Next we put Xi = 0 and x2 — • • ■ = xn = \ . Then

(3.3) (\-G'n)l(\-An)<(\-Gn)l(\-An)

and j < ((«+ l)/4)" are equivalent. The sequence /5„ = ((n + l)/4)n is strictly

increasing, which implies, for n > 2,

Pn>fl2=x\>2-.

The fact that inequality (3.3) is valid for « = 2, but not for n > 2, is rather

unusual since "most classical inequalities follow inductively from the two di-

mensional theorem" [4, p. 206]. Another example of this kind—also in connec-

tion with Fan's inequality—was given in 1974 by F. Chan, D. Goldberg, and

S. Gonek [4]. They proved that the function

'In In \l/r

/(r;x,,...,x„) = |    y=1     I    '=X J

fllxt/il-Xi)}1'*, r = 0,
.  i=\

satisfies the inequality

(3.4) f(r;xx,x2)<f(s;xx,x2)

for all real r and s with r < s and for all nonnegative xx, x2 with xx+x2 < 1

and Xi 7^ x2. This result, in particular, leads to

G2/G2 = /(0; x,, x2) < f(r; x,, x2) < f(\; x,, x2) = A2/A2

for all rG(0, 1).
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Furthermore, Chan, Goldberg, and Gonek investigated the question whether

inequality (3.4) also holds for more than two variables. Presenting interesting

counterexamples, they established that the implication

(3.5) r<s=> f(r;xx,... ,x„)<f(s;xi,... ,x„),

Xi£ (0, \] (i= 1, ... , n),

is in general not true if n > 2. However, in a recently published paper [2] it

was proved that (3.5) is valid for all n > 2 if 0 < r < s < 1, which yields a
refinement of Fan's inequality written in the form (1.1).
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