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Abstract. For 1 < p < oo we show that LP functions defined on a C°°

totally real submanifold of C" can be locally decomposed into the sum of

boundary values of holomorphic functions in wedges such that the boundary

values are in LP .

The general case of a C°° totally real submanifold is reduced to the flat

case of R" in C" by an almost analytic change of variables. LP results in

the flat case are then obtained using Fourier multipliers. In transporting these

results back to the manifold we lose analyticity, so it is necessary to solve a d

problem in an appropriate domain. This gives holomorphy in the wedges but

produces a C°° error on the edge. This C°° function is then holomorphically

decomposed using the FBI transform with a careful analysis to check that the

functions are C°° up to the edge and do not destroy the LP behavior.

0. Introduction

A distribution defined on a totally real C°° submanifold of C" can be de-

composed locally into the sum of boundary values of functions that are holo-

morphic in wedges. These holomorphic functions have polynomial growth near

the edge and so the boundary values are understood in the sense of distribu-
tions. This result is found in the paper of Baouendi, Chang, and Treves [1]. In

this paper we intend to show that if a function defined on a totally real C°° sub-

manifold of C" is in an LP class for 1 < p < oo, then it can be decomposed so
that the holomorphic functions have LP boundary values (Theorem 2). We first
show by careful estimates using the FBI transform that a C°° function on the

submanifold can be decomposed as in [ 1 ] so that the holomorphic functions are

C°° up to the edge. The problem of LP decomposition is then reduced to the

problem of C°° decomposition. This paper is mainly concerned with n > 1,

however the method can be applied to the case n = 1, which corresponds to a
curve in C.

1. Flat case

The straight case is R" as a totally real submanifold of C" for which the LP

decomposition is already known. For the convenience of the reader we sketch

a proof of this fact and include some definitions that will be used later.
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Definitions. A subset T c R"\{0} is a cone if x G Y and X > 0 implies

Xx £ Y. The polar cone of r is Y° = {y £ R"\x-y > 0, Vx G T}. If Yx and
Y2 are two cones we say Yx m Y2 if the closure of Yx is contained in Y2 U {0}.

Proposition 1. Let Y0, Yx, ... , Yv , C0, Cx, ... , Cv be a collection of non-

empty open cones such that Cj <g Y? for j = 0, \,..., v and the Cj cover

R"\{0}. If I < p < oo then every f £ L"(R") can be written as f =

Y?j=obvfj where bvf £LP(R") is the boundary value of a holomorphic function

f defined in the wedge R" + iYj■, for j = 0, 1, ... , v .

Proof. Since the Cj cover R"\{0}, there exists a partition of unity 1 =

EjLoZytf) where XiiS) e C°°(R»\{0}), suppxAQ C Cj u {0} , and for each
j , Xj{£) is positively homogeneous of degree 0. Let f £ Lp(Rn). Then

nx) = (/(£)v(x) = J2(xAt)te)nx) = j^ bvfj(X).
>=0 ;=0

For j = 0, 1, ... , v , bvfj(x) can be extended holomorphically to the wedge

R" + iYj by the formula

/)(* + <» = T^y, / Xj($)ei{x+iy)'(M)dt-
\L"-)    Jw

The integral will converge absolutely for y £ Y) and the map taking / to bvf

for each j is a homogeneous Fourier multiplier operator that maps LP(W)

into LP(R") for 1 < p < oo (see for instance Stein [3, p. 96]).

2. Curve case

We now generalize Proposition 1 to the case of a C°° totally real submanifold
of C" . It is first necessary to prove the splitting of C°° functions. This will

be Theorem 1, which we state now but prove in the next section. Theorem 2,

which is the main result of this paper concerning W splitting, is proven here

and makes use of Proposition 1 and Theorem 1.

Definitions. After a local holomorphic change of variables a C°° totally real

submanifold M of C" is locally the image of a C°° map Z = x + i<p(x)

from R" into C" such that <p has compact support, 0(0) = 0, cf>'(0) - 0, and

4>"(0) = 0. From now on Af is a fixed C°° totally real submanifold with local

defining function Z as described. Let Zj be an almost analytic extension of

Z to all of C" . Such an extension is a C°° mapping Zj: C" -► C" such that

Z((x) = Z(x) for every x G R" and (d/d~Zj)Zk vanishes to infinite order at

Im z = 0 for all j:, k = 1, ... , n . We note here for later use that all derivatives

of (d/dzj)Zk will also vanish to infinite order at Imz = 0 since Zk is C°°

there. If Y is a cone in R"\{0} and 8 is a neighborhood of 0 in C" we

define the wedge W(r, 6) = {Zj(x + iy) : x + iy £ (R" + iY) n 6} having edge
F(e) = Zj(R"ne) cm.

Theorem 1 (C°° splitting). Let Yo, Y\,..., Yv, Co, Cx,..., Cv be a collec-
tion of nonempty open cones such that Cj <g r* for j — 0, \, ... , v , and the Cj

cover R"\{0}. Let 0 be an open neighborhood of 0 in C" . Then there exists

an open neighborhood & of 0 such that 8' c 6 and every u £ C°°(E(Q))



C°° TOTALLY REAL SUBMANIFOLDS OF C" 189

can be written on E(&) as u = Y!j^o^vuj where for j = 0, 1, ... , v,

bvuj £ C9°(F(8')) is the boundary value of a holomorphic function Uj in the

wedge W(Yj, 8') and is C°° up to the edge E(&).

Proof. To be given in the next section.

Theorem 2 (Lp splitting). Let Yo,Yi,... ,Y„, Co, Ci,..., Cv be a collection
of nonempty open cones such that Cj c§ Y? for j = 0, 1, ... , v, and the Cj

cover R"\{0}. Let 1 < p < oo and let 8 be an open neighborhood of 0 in

C. Then there exists an open neighborhood & of 0 such that 8' c 8 and

every f £ LP(E(Q)) can be written on E(&) as f — Y^j^o^fj where for

j = 0, 1, ... , v, bvf £ LP(E(Q')) is the boundary value of a holomorphic

function f in the wedge W(Yj, 8') ■

Proof. Step 1. Almost analytic splitting. Without loss of generality, assume

8 is so small that Zj restricted to 8 is a diffeomorphism on to Z8(8). For

; = 0, 1,... , v, we can enlarge r; to Y) such that Yj is strictly convex,

Yj <= Yj and Cj <g Fj. Since Q g rj, there exists a constant c, such

that Vx G Cj and V> G T;-, x-y > Cj\x\ \y\, so we can take f, = {y £ R";

x-y> $)Cj\x\\y\, Vx G Cj}. Let / G LP(E(B)). Then g(x) = f(Z(x)) £
Lp(Rn n 8). Extend g by 0 to R" ; then g £ LP(R"), so according to Proposi-

tion 1 we can write g as g = £J=0 bvgj where for ; = 0, 1, ... , v , bvgj £

Lp(Rn) is the boundary value of a holomorphic function gj in the wedge

R" + ff j. For ; = 0, ... , v , define fj(w) = gj(Z~x(w)) for w £ W(Yj, 8).

Since each gj is holomorphic in the wedge R" + if/  and Zj  is almost

analytic, /} is almost analytic in the wedge W(Yj, 8), meaning that (d/d~zk)fj

vanishes to infinite order at the edge F(8) for all k = 1, ... , n . Therefore

every / G LP(E(Q)) can be written on E(Q) as / = Y^j=obvfj where for

7 = 0, 1, ... , v , bvf £ LP(E(&)) is the boundary value of a function /} that

is almost analytic in the wedge W(Yj, 8).
Here we make a note of the polynomial growth of the derivatives of gj and

therefore of / at the edge. Now g £ LP(R") and has compact support so
g £ L°°(Rn). Let a be a multi-index from N" then

(£f '** + *> = (2tW I X^re«x+i^m di.
Therefore

( d\a    ,       .A Ca

where

Step 2. d correction, which leads to a holomorphic splitting modulo a C°°

function on the edge. We now construct a domain Q contained in the wedge

W(Yo, 8) on which to solve du0 = df0 . The domain Q will be the intersection

of finitely many strictly pseudoconvex domains and for such domains Dufresnoy
[2] prove that if dfo is C°° up to the boundary, then the solution w0 can be

chosen to be C°° up to the boundary.
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Since To <e fn and To is strictly convex, there exists a finite number of

vectors vx, ..., vm and corresponding half spaces Hx, ... , Hm of W , where

Hj: = {x G R" ; x • vj > 0} , such that

m

Yo^^Hj^Yo.
7=1

For each j = I, ... , m let Pj(z) = pj(x + iy) = \y\2-y • Vj, which is a strictly

plurisubharmonic function in C" . The region {pj < 0} is a tube domain

over iRn whose base projection is a ball contained in Hj and tangent to the

boundary of Hj, the set {x • Vj = 0}, at 0. Near 0, R" + iHj « {pj < 0}, so
there exists a neighborhood C/C0 of 0 in C" such that

m

(R" + iTo) n U € [){pj < 0} n £/ <e (R" + jT0) n U.

7=1

Because Zj is almost analytic at 0 and each pj is strictly plurisubharmonic,

there exists a neighborhood V c U of 0 in C" such that for j = I, ... , m,

pj(Zrx(w)) is strictly plurisubharmonic on Z$(V). Let r > 0 such that the

ball B(0,r)cZi(V) and set

a = {w £ 5(0, r); Pj(Z-\w)) < 0 for ; = 1, ... , m}.

Then Q is the intersection of m + 1 strictly pseudoconvex domains and

Zt(R" + iY0) nfi(0,r)iflg Z,(R" + if) n 5(0, r).

So if we let 8 = Z,-1 (5(0, r)) c 8, then

PF(r0, 8) <<= Q € W(f o, 8).

dfo is a f9 closed (0,1) form on Q.. dfo is certainly C°° up to the

boundary of Q, away from the edge E(&), and we now show dfo is also C°°

up to the edge

df0(w) = jr^-(w)dwk.
k=\      k

So the pullback (dfo)* to F(8) is

(^o)' = E ^(z»(z)) d*\^ = E ^=-(Uz)){dz\(z) + aZf(z)).
fe=l k k=\ k

Now ^(z) = /(Zj(z)) is holomorphic so

0=^ = E §^(A(mdzk(z)) + e ^-(z,(z))(dz\(z)).
k=\ k k=\ k

So we make a substitution into the equation for (dfo)* to obtain

<W = E §§-(Zt(z))(dZkt(z)) - E ^(Z,(z))(dZk(z)).
k=\ k k=\ k
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We noted before that the coefficients of dZk(z) and <9Z8 along with all their

derivatives vanish to infinite order at Im z = 0 and that the derivatives of />

grow at most polynomially at Imz = 0, so we conclude that (dfo)* extends

smoothly to the value 0 at Im z = 0. Hence dfo is C°° in Q,. Therefore,

according to Dufresnoy, there exists a function uo in Q such that «o is C°°

up to the boundary of Q and duo = dfo in Q. The function go = fo - «o is

then a holomorphic function in the smaller wedge rV(Y0, 8) and has boundary

value on the edge

bvgo = bvfo + bvu0 £ Lp(E(S)).

For each of the other functions /,...,/ a similar d correction can be

carried out in appropriate domains. In each case we can write bvf — bvgj =

bvuj on the edge of a smaller wedge W(Yj, 8), where gj is holomorphic in

the wedge having LP boundary value and bvuj is a C°° function on the edge.

If we define the C°° function u on the edge F(8) by u = - Y%=o ui men

we have shown there exists a neighborhood 6 <= 8 of 0 in C" such that every

/ G Lp(E(Q)) can be written on F(8) as

V

f=z^bvgJ + u
7=0

where for j = 0, 1, ... , v, bvgj £ LP(E(Q)) is the boundary value of a

holomorphic function in the wedge W(Yj, 8) and u £ C°°(E(Q)).

Step 3. Use Theorem 1 to split u. We now use Theorem 1, which states there

exists a neighborhood 8' c 8 such that on F(8') we can write u = £ J=o bvuj

where for ;' = 0, \, ... ,v, bvuj £ C°°(F(8')) is the boundary value of a

holomorphic function in the wedge rV(Yj, 8'). Theorem 2 has therefore been

proven using this 8' and taking / = gj + Uj for j = 0, 1, ... , v.

Remarks. To get the LP decomposition it is not necessary to assume the man-
ifold to be C°° but require only smoothness Ck for some k large enough,

however, we have not done this. Apply this method to the case n = 1, of a

curve in C, we have been able to prove the Lp decomposition assuming the

curve to have smoothness Cx+a for any a > \/p .

3.   C°°  SPLITTING

In this section we introduce the FBI transform as found in [1] and use it to

prove Theorem 1. M, Z = x + id>, and Zj remain as defined in the previous
section.

Definition. Let U be a neighborhood of 0 in R" and u £ C0DO(C/). Then the
FBI transform of u is

F(u;z,t,()= f ei^^z^-^z^'z^2u(y)dZ(y)
Jr"

where t£Rn, z £ C , ( £ C" , |Im£| < |Ref|, (C) = (Cf + •• ■ + C„Y/2, and

[Z(t) - Z(y)]2 = (Z,(0 - Z,(y))2 + --- + (Z„(t)- Zn(y))2.
Let T and C be open cones in R"\{0} such that C <g r°. Let d > 0 and
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8 a neighborhood of 0 in C" . Then the following restrictions will apply:

(1) \Z(t)\<d,
(2) z £ W(Y, 8) = {Z,(x + iy); x + iy £ (Rn + iY) n 8} ,

(3) C = 'Zx(t)-X£ + 4i^\[z - Z(t)] where { G C.

Lemma 1 (fast decay of the FBI transform). If U, d and 8 are small enough

and u £ Cq°(U) , then for every m £ N there exists a constant Cm such that

\F(u; z, t, C)| < Cm/\C\m where Cm is independent of t and z provided they

satisfy the restrictions (l)-(2) and £ satisfies (3).

Proof. According to [1, pp. 362-365], U, d, and 8 can be made small enough
so that Re(/C-[z - Z(y)] - (Q[Z(t) - Z(y)]2) < 0 for all t, z, and C that
satisfy the restrictions (l)-(3) and y £ U. For our purposes we also assume

that d and U are small enough such that \Z(t)\ < d and y £ U imply

\Z(t) - Z(y)\ < \/(4y/n). There exists vector fields Mx, ... , M„ such that

Mj(Zk(y)) = Sjk for all j, k = 1, ... , n. If (a,-/) is the inverse matrix of

the Jacobian of Z(y) then for j = I, ... , n, Mj = Y!i=x aji(d/dyi). If u £
C0°°([/) and v £ C°°(U), then du = Y,"=xMj(u)dZj(y) and, therefore, we

have the following integration by parts formula

I vMj(u)dZ(y) = - f Mj(v)udZ(y)   for j= 1,...,« .
Jw Jv

Fix C 7^ 0. For some k £ {1,...,«}, \Ck| > \Cj\ for j = 1, ... , n . Then
1(01 <ICI<V»IC*|. Let

S = K-[z-Z(y)\-(Q[Z(t)-Z(y)]2.

Then

Mk(es) = es{-iCk + 2(Q[Zk(t) - Zk(y)]}

= Ckes {-/ + ^-[Zk(t) - Zk(y)]} = CkesT,

\T\ > 1 - 2^|Zfc(0 - Zk(y)\ > 1 - 2v^^= > \ ,

which implies, in particular, that in the y variable \/T £ C°°(«7). Therefore

F(u;z,t,Q=   f esu(y)dZ(y)= f (esZkT)^dZ(y)

=»/ M^mdZ(y). -i / esMi m\ dZ(yh
U Jr» 1 U Ji« v  *   j

where we have used the integration by parts formula once. If we use integration

by parts m times we obtain

F(u;z,t,Q=(^y J^esMk   jMk   •••   jMk (^   •••     dZ(y),

where Mk appears m times in the integral. The term

Ml[iMt[...[I^(!f>)]...]'
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can be expanded into a finite sum of terms of the form

(const) (Pj M{(u)Ml(T)

where r, s, and q are positive integers. Each of the terms is bounded indepen-

dent of t and z. Indeed \(\/T)r\ < 2r and \M[(u)\ < (const)- sup{\u{a)(y)\; y

£U, 0 < \a\ < s} and Mk(T) = 2(0/C* so \Mk(T)\ < lyfn, and for q > 1,
Mqk(T) = 0. Therefore

Mk[^Mk[..[^Mk(^f.)]...]]<Cm

where Cm is a constant that depends only on the derivatives of u of order

< m . Using the fact that Re S < 0 we conclude that

|f(„;z,,,c)l<^//|zwl<(v|^//|zwl<1^.

We now prove Theorem 1.

Theorem 1 (C°° splitting). Let Yq,Y\, ... ,Yv,Co,C\,... ,CV be a collec-
tion of nonempty open cones such that Cj m Y® for j = 0, 1, ... , v, and the C}

cover R"\{0} . Let 8 be an open neighborhood of 0 in Cn . Then there exists

an open neighborhood 8' of 0 such that 8' c 8 and every u £ C°°(E(Q))

can be written on E(&) as u = Y^j=0bvUj where for j = 0,1,..., v,

bvuj £ C°°(E(&)) is the boundary value of a holomorphic function Uj in the

wedge W(Yj, 8') and is C°° up to the edge E(&).

Proof of Theorem 1. Let d > 0, and U = 8 n R" . Since this is a local result,
we may assume 8 to be as small as we wish. First assume that d, 8, and,

therefore, U are small enough so that Lemma 1 applies. We identify u and its

pullback to U (i.e., u(y) = u(Z(y)) for y £ U). Now cut u off by a function
X(y) £ C0°°(C/) such that x = 1 in a neighborhood of 0. If we prove the

Theorem for xu then it is true for u since xu — u ina neighborhood of 0, so

without loss of generality, we assume u £ Cq°(U). To use the results in [ 1 ] we

do not need the Cj to cover R"\{0} , instead we will deal with a collection of

open subcones Cj C Cj such that CjnC'k = 0 if j ^ k , j, k = 0, ... , v and

R"\(Cq U C[ U • • • U C'v) has measure zero. We next assume d, 8, and U are

small enough to use Theorem 2.2 in [1] that gives a holomorphic decomposition

(u = Ys uj \ uj holomorphic in wedges) of u modulo a function holomorphic

in a neighborhood of the origin by setting

uj(z)= f f     (Z)n'2F(u;z,t,C)di;dZ(t)
J\z(t)\<d Jiec;

for ; = 0,..., v, where C = lZx(t)-[£ + 4i^\£\[z - Z(t)] for £ g Cj , z is

restricted to the wedge W{Yj, 8') and 8' is any open set with compact closure

contained in 8.
Now consider the  function   uq(z)   that  is holomorphic  in  the wedge

W(Yo, 8').   We show u0 is C°° up to the edge E(&) by showing that all
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its derivatives in the z variables (z derivatives are 0 since Mo is holomor-

phic) are continuous up to the edge. Substituting for F(u; z, t, £) we have

u0(z)= f f     (0"/2 / e,c-[z-Z{y)]-{!:)[Z{t)-Z{y)]2u(y)dZ(y)di;dZ(t)
J\Z(t)\<d JtecQ Jr-

where

(3) C = 'Zx(t)-xc; + BUz-Z(t))

for £ G Cq and B = 4Z/328. Assume that d and 8' are small enough so

that if \Z(t)\ <d, z £ Z„(8'), and £ is given by (3) then ±|£| < |£| < 2|£|

and jKOI < l£l < 2|(C)|. To compute derivatives of uo(z) we differentiate
terms under the integral sign that involve z and £. The following formulas

are needed:

(FI) -—Cj = B\€\djk   where ^ is the Kronecker delta,

Differentiating u repeatedly leads to expressions of the form

ff P(QQ(Z)R(t)S(z) f e* ■ ̂-2{y)\-(r)[2{t)-z(y)YZ(y)au(y)

= f f     P(QQ(OR(t)S(z)F(Zau-z,t,QdCdZ(t)
J\Z(t)\<d   Ji€C^

where R(t) is a bounded continuous function on {|Z(f)| < d}, S(z) is a

polynomial, a is a multi-index, and F(£) and (?(£) are continuous functions

whose derivatives grow at most polynomially in |£|.

The polynomial growth of F(£)(2(£) is offset by the fast decay of the FBI
transform of the function Zau as proven in Lemma 1 and, therefore, the in-

tegral converges absolutely for all z in the wedge up to the edge and so defines

a continuous function up to the edge. This concludes the proof of the C°°

splitting.
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