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(Communicated by Frederick R. Cohen)

Abstract. Let X" denote the smash product of n copies of RP2 . We de-

scribe a minimal set of generators for H*(Xn ; Z2) as a module over the mod

2 Steenrod algebra. The description includes a procedure to obtain all of the

generators, a generating function to enumerate them, and a proof of a nice

conjecture about how many there are in each dimension.

1. Introduction and statement of the principal result

Let Pq - H*(RP°°)m be the mod 2 cohomology of the product of q copies

of RP°°, considered as an ^-module. This topic has been studied much in

recent years. Its homological properties have been studied by Lannes and his

school, following the work of Carlsson and Miller. It is known to be decompos-

able, and the indecomposable pieces have been studied by Mitchell and Priddy

[6], Harris and Kuhn [5], Campbell and Selick [3], and Harris, Hunter, and

Shank [4]. Its relation to TotAi(Z2, Z2) has been studied by Singer [8], and

its relation to modular representation theory has been studied by Wood [9] and

others. To solve the problems raised in [8] and [9], one needs to know a minimal

generating set for Pq as an /^-module. A qualitative conjecture as to the struc-

ture of this set was given by Peterson in [7], and this was proved by Wood in [ 10].

However, a more quantitative answer is needed for the applications. By duality

it is enough to compute the ^-annihilated elements in Ht(RP°°)®q , or by sum-

ming over q it is enough to find ann^ H^QZRP00) = anny42(0fl H^RP00)®").

This seems to be a difficult problem.

The problem of finding ann^ //,(QX7?F2) is clearly a related problem to

ann^2 Ht (CiLRP00). This problem turns out to have a concisely expressable

answer, whose exposition is the purpose of this paper. The complexity and the

combinatorics involved in the solution at least suggest what the solution for

CHRP00 might look like. The indecomposables we find for H*(RP2)®q must
remain indecomposable in H*(RP°°)®q, so our answer gives a crude lower

bound on the number of generators in each dimension. As a final motivation,

the problem of determining the ^2-module generators for H*(RP2)®q is a

reasonably natural question in its own right, and in the final section we note
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that it is equivalent to the corresponding question for certain other spaces as
well.

We proceed to give several paragraphs of background and easy definitions;

then we state our main result as Theorem 1.

Throughout the calculation, F denotes the field of integers modulo two,

and (a, b) denotes the free monoid on the two symbols a and b. The free

F-algebra on a and b has (a, b) as an F-basis and is denoted F(a, b) or

T(aF ®bF), the latter notation referring to its interpretation as the tensor alge-

bra on a two-dimensional vector space. We identify Ht(CiLRP2) with F(a, b)

as algebras by letting a and b be the images of the generators of HX(RP2)

and of H2(RP2), respectively, under the identity adjoint RP2 -» CILRP2.

Thus Sql(b) = a , Sq*(b) = 0 for k > 1, and Sq*(a) = 0 for k > 0.
The monoid (a, b) is viewed as a submonoid of F(a, b) and its elements

are called monomials. Any right factor of a monomial x is called a tail of x .
We impose the lexicographic ordering on (a, b), and we call one monomial
lower than another if it would appear earlier in the dictionary. The high term

of a nonzero sum of distinct monomials w £ F(a,b) is the lexicographically

highest contributor to the sum and is denoted w'. Notice that (uv)' = u'v'.

The length of a monomial is the total number of symbols (the number of a's

plus the number of b 's) while its excess, denoted e( ), is the number of b 's

minus the number of a's. An element of F(a, b) is called bihomogeneous if

it is a sum of monomials sharing a uniform length and a uniform excess.

For simplicity we denote the vector space span of all bihomogeneous Sq*-

invariant elements of F(a, b) by A . We allow only bihomogeneous elements
since these are the elements that correspond to a fixed topological dimension

and to a fixed number q of factors in the product (RP2)Aq . Notice that A is

a subalgebra of F(a, b); by [1] it is necessarily a tensor algebra.

An essential ingredient in our analysis of A will be the homomorphism
6: F(a, b) -» F(a, b) given by 6(w) = bwa + awb, which increases length

by two but does not affect the excess. Define 5 to be the least subalgebra of

F(a, b) that contains 1 and is closed under 8. Let 9': (a, b) —» (a, b) be

given by 6'(x) = bxa, and let S" be the least submonoid of (a, b) containing

1 and closed under 6'. We shall see shortly that S' consists of the high terms

of the nonzero elements of S.

Our principal result is

Theorem 1. A is the tensor algebra on 9(S) © aF ; in particular, it is generated

by Su {a}.

In §2, we give the proof of this result; in §3 we count the size of A ; and in

§4 we give a basis for S and describe ann^2 Ht(QI.RP3).

2. Proof of Theorem 1

After ten fairly easy lemmas of a combinatorial nature, the proof of Theorem

1 will be nearly a triviality.

Lemma 2.1. A monomial x belongs to S' if and only if e(x) = 0 and every tail

of x has nonpositive excess.

Proof. Let S'0 denote the set of monomials x having the latter property.

Clearly S' C S'0, since S0 is a submonoid of (a, b) closed under 6'.   Let
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x £ S'0 and assume inductively that words in SQ of length shorter than x

are known to belong to S'. There is a unique maximal factorization of x as

x = xx ■ ■ ■ xm in (a, b) where each Xj has zero excess ("maximal" means that

the number m of factors is maximal). Each Xj clearly belongs to S'0. If m > 1

we are done because the inductive hypothesis gives that Xj £ S'. If m = 1,

then every proper tail of x has negative excess, and it follows that x = bya

with y £ S'0. So y £ S' and then x £ S', as desired.

Lemma 2.2. 5" equals the free monoid on 0'(S').

Proof. We must show that each x £ S' - {1} has a unique factorization as

d'(xx)9'(x2) ■■■d'(xm) with Xj £ S'. The maximal factorization described

above provides this.

Lemma 2.3. There exists a multiplicative injection f:S'^>S such that f(S')

is an F-basisfor S and (f(x))' = x for any x £ S'.

Proof. Put f(\)= 1. Assuming / has been defined and has the stated prop-

erties on words shorter than x £ S', factor x uniquely as x = xx ■ ■■ xm where

each Xj £ lm(9'). If m > 1, put f(x) = f(xx)-■■ f(xm). If m = 1, write
x = 0'(y) and put f(x) — 9(f(y)). The reader can now check that (f(x))' = x .

Since f(S') is closed under 9, we have 5 = f(S')F , whence f(S') is an F-

basis.

Lemma 2.4. S coincides with the tensor algebra on 9(S).

Proof. Immediate from Lemmas 2.2 and 2.3.

Let S+ denote the subalgebra of F(a, b) generated by S and {b} and let

S- denote the subalgebra generated by S and {a}. Let S'+ (resp. SL) be the

submonoid of (a, b) generated by S' and {b} (resp. S' and {a}). Later we

will show that A = S- .

Lemma 2.5. The following four sets coincide: (i) S'+ ; (ii) the free monoid on

9'(S') U {b}; (iii) the set of high terms of nonzero elements of S+ ; (iv) the set

{x £ (a, b)\e(x) > 0 and every tail of x has excess < e(x)}. Furthermore, f
extends to f+: S'+ —> S+ such that f(S'+) is an F-basis and (f+(x))' = x and

S+ = T(9(S) © bF).

Proof. This is like Lemmas 2.1-2.4. The unique maximal factorization of an

x £ S'+ is obtained by breaking x at every point that yields a tail z whose

excess is greater than or equal to that of all the tails of z .

Lemma 2.6. The following four sets coincide: (i) S'_ ; (ii) the free monoid on

9'(S') U {a} ; (iii) the set of high terms of nonzero elements of 5_ ; (iv) the set

{x £ (a, b)\x and every tail of x has nonpositive excess}. Furthermore, f

extends to /_: S'_ —> S- such that f(S'_) is an F-basis and (f-(x))' = x and
S- = T(9(S) © aF).

Proof. This is dual to that of Lemma 2.5.

Lemma 2.7. Sq^(w) = 0 if k > 0 and w £ S- , i.e., S- c A.

Proof. A is easily seen to be a subalgebra of F(a, b) that is closed under 9 ,
so S c A . Since a £ A , S- C A.

Lemma 2.8. Let Sk denote the subset of S+ (resp. S- ) consisting of elements

of excess k if k > 0 ( resp. k < 0). For k > 0, Sq^: Sk -> S_k is bijective
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and Sq>k(Sk) = 0. In particular, if w ^ 0 and w is bihomogeneous of excess

k, then Sqk(w) ^ 0 and Sq>k(w) = 0.

Proof. A basis element of Sk may be written w = wobwxb---bwk where
Wj £ f(S'). Then Sq>k(w) = 0 while Sqk(w) = woawxa- ■ ■ awk , which is the
corresponding basis element of S_k .

Lemma 2.9. Let w £ F(a,b) be a nonzero bihomogeneous element and suppose

k = e(w) > 0. Then there is some j >k for which SJq> (w) ^ 0. If in addition,
Sq>k(w) = 0, then w £S+.

Proof. We may assume inductively that the lemma holds for elements shorter

than w , as well as for elements of the same length as w whose high terms are

exeeded by w'. Consider two cases.

If w' has any tail yo whose excess is greater than k , write w' = Xoyo and

w = Xoy + v where y' = yo and either v = 0 or v' is lower than Xo. The

inductive hypothesis says that Sql(y) ^ 0 for a suitable j > e(y) > k + 1.

Then

Sq{(w) = x0Sql(y) + (terms lower than x0) ^ 0.

Clearly, "Sq>k(w) = 0" is impossible in this case.

If instead every tail of w' has excess < k, then w' £ S'+ by Lemma 2.5. Let

u = w - f+(w'). If u = 0, then w = f+(w') £ S+ and we are done, so suppose

«/0 and notice that u' < w'. By our inductive hypothesis, Sqi(u) / 0 for

some j > k. If j can be chosen to be larger than k , then Sql(w) ^ 0 because

(by Lemma 2.8) Sq>k(f+(w')) = 0. If instead j = k with Sq>k(u) = 0, then
u £ S+ whence w £ S+ and Sqk(w) ^ 0. Conversely, if Sq>k(w) - 0, then

Sq>k(u) = 0, implying u £ S+ and then w £ S+ .

Lemma 2.10. Let x £ A be bihomogeneous and nonzero. Then x' £ S'_ .

Proof. Using Lemma 2.6 it suffices to check that every tail of x' has nonpositive

excess. Suppose not, and write x' = jrj^o with e(z0) > 0. Next, write x =

yoz + v where z' = zn and either v = 0 or v' is lower than y0. By the

previous lemma, Sq{(z) ^ 0 for some j > 0. Then

Sq{(x) = yoSql(z) + (terms lower than y0) / 0,

contradicting the hypothesis x £ A .

Proof of Theorem 1. By Lemmas 2.6 and 2.7, we need only show that A c S- .

Let x £ A be bihomogeneous nonzero, and assume that elements of A with

high term exceeded by x' have already been shown to belong to S- . Since

x' £ S'_ , we may put u — x - f-(x'). If u = 0, we are done. If u ± 0, then

u' is lower than x'; but u £ A, so u £ Sl. Then x £ S- .

3. Counting A

In this section we give an explicit formula for the size of a basis for A . The

following theorem was conjectured by W. S. Wilson and it gave us a good start

on our results.

Theorem 3.1. Suppose q > 2m > 0. The number of linearly independent biho-

mogeneous elements in A of length q and excess 2m-q is (^,)-(„,!])• This is
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also the number of minimal generators for H*((RP2)Aq) as an A2-module that

occur in topological dimension q + m. The total number of minimal generators

for H*((RP2)*q) is ([qq/2]).

In order to prove Theorem 3.1, we employ generating functions. Since these

generating functions will involve the Catalan sequence {Cm}, we provide a

quick review of some of its properties. The mth Catalan number is defined by

Cm = 0/(m+l).

Lemma 3.2. Each of the following properties is satisfied by and uniquely deter-

mines the Catalan sequence:

(a) C*=fi?)-(&).*>0;
(b) Cp = {2px) - (2;_-2') for p > 1, and C0 = 1;

(c) Cp = 2X1 Cn-iCp-n ifp>0,andC0 = l;
(d) If C(x) - Y,^LoCnxn denotes the generating function, then xC(x)2 +

1 = C(x).

Lemma 3.3. The number of basis elements of S of length 2n is C„ .

Proof. If s„ denotes this number, then the generating function of {sn} is

S(x) = Z)^Lo snx2n ■ Since 9 raises length by two, the corresponding gener-

ating function for 9(S) is x2S(x). By Lemma 2.4 we have (1 - x2S(x))~x =

S(x), which gives x2S(x)2 + 1 = S(x). By Lemma 3.2(d), we must have

S(x) — C(x2), whence sn = C„ .

We proceed next with two combinatorial identities.

Lemma 3.4. If r >2s,

gc- ((7-2;) - (/--/-,))=C: I) - C:D-
Proof. Denote the left- and right-hand sides by D(r, s) and E(r, s), respec-

tively. Notice that Lemma 3.2(b) says Cp = E(2p, p). An easy consequence
of 3.2(a), (c) (put k = p - n) is

(1) D(2p,p) = E(2p,p)     forp>0.

To prove the lemma, first notice that

E(r,s) = E(r-l,s)+E(r-l,s-l)     ifs>0,

() D(r, s) = D(r- 1, s) +D(r- 1,5-1)    if r > 2s.

Let P(s) be the proposition "D(r, s) = E(r, s) for all r > 2s".

Now P(0) is true, because both quantities are zero. Let 5 > 0 and assume

P(s - 1); then the equation D(r, s) = E(r, s) follows by induction on r, using

(1) as the intial step and (2) as the inductive step, so P(s) is true. Thus P(s)

is true for all s > 0.

Lemma 3.5. The following is an identity in power series in two variables:

(!S((")-(^))^)H- SH--
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Proof. When any nonzero term in the expansion of the left-hand side is written

as a coefficient times xryr~2s, notice that r > 2s . This coefficient is

(0-G:.)HC:U:D)
-£MCr-?K'--.*.))-

The first two terms of (3) combine to (J~J) - (J~j) whenever r > 0. Since

we may assume that r > 25, Lemma 3.4 shows that (3) vanishes except when

r = s = 0, in which case it is (jj) = 1.

Proof of Theorem 3.1. Let Xqk be the dimension of the vector space spanned

by bihomogeneous elements of A having length q and excess —k . Denote its

two-variable generating function by

L(x,y) = Y,hkXqyk.

By Theorem 1, this generating function coincides with that of the tensor algebra

on aF ®0(S), a vector space whose basis generating function is

xy + x2S(x) = xy + ^2 Cn-Xx2n.

n>\

Thus
OO

L(x,yYx = l-xy-YJCn-Xx2n.

71=1

By Lemma 3.5 we have

^=z£((:)-U-.))^2"-
0=0 m=o  v v     ' v x '

Thus Xak = either {qm)-{mq_x) if -k = 2m-q , orOif k <0 or k^q (mod 2).

Invariants of length q correspond to ^2-module generators for H*((RP2)Aq),

and those of excess 2m - q involve precisely m b's and q - m a's and,

therefore, occur in topological dimension q + m .

4. Some corollaries

Recalling that the algebra A is free on the set 9(f(S')) U {a}, let us write

down explicitly how 9(f(S')) is constructed. Let w — 9(1) — ab + ba,

and let Vx = {w}. Build the free monoid (Vx) on Vx , which is the set

{1, w , w2, u;3, ...}, and apply 9 to each element of it. We obtain a set

V2 = {w, bwa + awb, bw2a + aw2b, ...}

that contains Vx . Having constructed Vx c V2 c ■ ■ ■ c V,, let (V,) be the free

monoid on V, and let V,+x = 9((V,)). The following is an easy corollary of the

construction.
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Corollary 4.1.  9(f(S')) = \Jt>0 V,.

Let S?t denote the symmetric group on / letters. It acts on the vector space

of bihomogeneous elements of length / and excess k in F(a,b). For x G

F(a, b) of length t and for any a £S?t, notice that Sqk (x) = 0 if and only if

Sqk(a(x)) - 0. The permutation that cycles the first t+ 1 symbols will convert

xw to 9(x) when x has length t. Using these facts we obtain the following

description of A.

Corollary 4.2. Let x £ F(a, b) be bihomogeneous of excess -k (k > 0) and

length 2m + k. Then x £ A if and only if there exists o £ S^2m+k such that
x = o(wmak).

The proof of Theorem 1 used only the facts that our tensor algebra had two

generators connected by a Sq\ and that Sq* satisfies the Cartan formula. The

proof will also work for other tensor algebras having two generators connected
by a Sqk .

Corollary 4.3. The proof of Theorem 1 works equally well to compute

ann^2 H»(QLX), where X = CP2, HP2, or the Cayley projective plane.

Finally, we note that H*(QLRP3) can be handled without incurring ad-

ditional difficulties. Letting c denote the nonzero element in the image of

H3(RP3) in H3(QZRP3), we have H^QIRP*) = F(a,b,c). Because Sq>°(c)
= 0, c can be "inserted into" or "deleted from" any element of F(a,b,c)

without altering whether or not that element lies in Ker(Sqk). To make this

precise, we state

Lemma 4.4. Let x £ F(a, b) be bihomogeneous of length t. For any m and

any a £ S^t+m , o(xcm) £ ann^ H*(QLRP3) if and only if x £ A .

Define 9: F(a, b, c) —> F(a ,b,c) by 6(x) = bxa + axb .

Corollary 4.5. Let V denote the least subalgebra of F(a,b, c) that contains

c and is closed under 9. Then ann^ Ht(QZRP3) is the tensor algebra on the
vector space 9( V)®aF®cF.

A basis for 9(V) can be listed as in Corollary 4.1, by starting with the set

{1, c} and iterating the process of applying 9(( )). We leave the details to the

reader.
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