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THE MOUNTAIN CLIMBERS' PROBLEM

TAMAS KELETI

(Communicated by Andrew M. Bruckner)

Abstract. We show that two climbers can climb a mountain in such a way that

at each moment they are at the same height above the sea level, supposing that

the mountain has no plateau. That is, if / and g are continuous functions

mapping [0, 1] to [0, 1] with /(0) = g(0) = 0 and f(\) = g(\) = 1 , and
if neither / nor g has an interval of constancy then there exist continuous

functions k and h: [0, 1] -> [0, 1] satisfying A:(0) = h(0) = 0, k(l) =
h{\) = 1 , and fok = goh.

Introduction

In this paper we shall examine the following problem: Two mountain

climbers begin at sea level, at opposite ends of a (two-dimensional) chain of

mountains. Can they find routes along which to travel, always maintaining

equal altitudes, until they eventually meet?

If we now select a point of maximum altitude and reparametrize, we can
formulate it as follows:

(*) Let / and g be continuous functions mapping [0, 1] to [0, 1] with

/(0) = g(0) = 0 and f(l) = g(l) = 1. Are there continuous functions k

and h: [0, 1] -» [0, 1] satisfying k(0) = h(0) = 0, k(l) = h(l) = 1, and
f°k = g°h1

This problem, in a slightly different form, was posed by Whittaker in [2].
Whittaker proves that the answer is yes if / and g are piecewise monotone

(see also [1]). He also shows that (*) is not true in general. Namely, it is easy

to verify that for the following two functions there are no corresponding k and

h: let / be a monotone function that is constant in an interval, let g be a

function that oscillates around this value. (See Figure 1 on the next page.)

It does not follow from this counterexample that a "typical continuous" func-

tion is not climbable; / is a very special continuous function (it has an interval

of constancy), and this is the reason that the pair of functions (/, g) is a coun-

terexample. We can hope that all the counterexamples are similarly restricted,

namely, that the answer for (*) is yes if we suppose that neither / nor g have
an interval of constancy.

This is the main result of this paper.
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Figure 1

Notation 1. y = {f\f: [0, 1] -> [0, 1] continuous, f(0) = 0, /(l) = 1}.
Let C[a, 6] denote the set of continuous functions defined in the interval

[a, b] where a <b.
[a, b] will denote the closed interval [a, b] if a < b; [b, a] if b < a and

it will denote the point a if a = b .

& = {f£C[a,b]\a,b£R, a<b, f([a, b]) = [f(a), f(b)]}.

f m g   (f and g match each other) if f, g £ & and their range is the

same.
f ~ g (f and g are climbable) if / tx g and 3k,h£§':fok = goh,

and if the ranges of k and A are equal to the domains of definition of / and

g, respectively.
By monotone we shall mean nondecreasing or nonincreasing.

Remarks.  f,g£Sr=>fwg.
• If / txj g, then by linear change of parameter we can get two functions

/,, g\ from y. Then / ~ g if /, ~ g\, since we can reparametrize the

functions k\ and /z, as well.
• It follows from the previous remark that it will be enough to prove the

statements for functions f, g £&' instead of for all functions satisfying / m

g ■
• If /, g £ y, then / ~ g <&3k, h£3r:fok = goh, which means that

the new, more general definition of climbable is an extension of (*).

First we shall prove a statement that is weaker than our theorem but from

which the statement of [2] follows easily.

Proposition 1. If f ex g and f is piecewise strictly monotone then f ~ g.

Proof. Let n denote the number of local extreme values of /. Since / has a

global maximum and a global minimum, n > 2 .

We shall prove the statement by induction on n . If n = 2 then / is strictly

monotone, and in this case the statement is obvious.
Assume that n > 3 and the statement is valid for 2, ... , n - 1. By using

the remarks above, we can suppose that /', g £ y. First we assume that 1 is

the only point where the value of / equals 1.
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Let yx be the second largest local extreme value of /, let X, be the greatest

point where the value of / is y\. Let xn be the last local extremum point, let

y0 = f(x0). (See Figure 2a.) Here and in the sequel, last means the maximal
element of a closed set.) It is clear that x0 < x,, y0 < y\, f is strictly
increasing in [x0, 1], and f([0, xx]) = [0, yx].

Let z, be the smallest value in [0,1] satisfying g(zx) = yx, ux be the small-

est value in [z,, 1] satisfying g(ux) = y0, z2 be the smallest value in [«,, 1]

satisfying g(z2) = yx , etc. (See Figure 2b.) The function g is continuous, thus
there exists an index m such that after zm, g > yo ■

Let vk be the greatest point in [0, uk] for which g(vk) = yx . (Clearly

Zk <vk <uk.) Let wk be a minimum point of g in [vk, zk+x\. (See Figure
2b.) Let w'k be the greatest point in [0, Xi] for which f(w'k) = g(wk).

Using these points and our assumption, we can show how to climb f and
g. It follows from the construction that

(a) f\[0,xx]Mg\[0,zx],
(b) f\[xx,w'k]ixg\[vk,wk],

(c) f\[wk,xx]c*g\[wk, zk+x],

and in these intervals, / has less than n local extreme values, which means,

using the assumption, that these pairs of parts of functions are climbable. We

can link the climbing of the pairs of function parts (b) and (c). We still have

to climb the function g in the intervals [zk, vk] (k = 1, 2, ... , m - 1) in

such a way that at the same time we traverse on the graph of / beginning from

(x,, f(xx)) and returning there. Finally we also need that when we move on

the graph of g from (zm , g(zm)) to (1, 1), we similarly move on the graph

of / from (x,, f(xx)) to (1,1). We can do the above steps easily since in
these intervals the range of g is in [y0, 1], xx £ [x0, 1], and / is strictly

monotone increasing in [x0, 1], and its range is the interval [y0, 1] here, and

#(1) = 1. (For example h(x) = x and k = f~x o g are well defined in the
given intervals and obviously fok = goh.)

Therefore, we can make the induction step in the case when 1 is the only
point where the value of / is 1. Now we remove this assumption. The points

where / attains its maximum are x, < x2 < • • • < xm - 1.  Let yk be the
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first minimum point of / in [xk , xk+x], and let zk be the greatest point for

which g(zk) = f(yk). In this case, f\[0,xx]txg, f\[xk,yk]c<g\[\,zk],
and f\[yk, xk+x] c< g \ [zk, 1]. For these functions we proved that they are

climbable, and as we can link these climbings, / ~ g. This concludes the

proof.

Notation 2. For a fixed / G C[a, b] we shall say that a = Xn, x,, ... , x„ = b

is a nice sequence if f\ [x,_,, x,] G & (i = 1, 2,...,«), in other words, if

f{[Xi-\, Xj]) - [f(Xi-X),f(Xi)] and x,_, # x,.
We call a nice sequence a nice partition if a = xo < x, < • • • < xn = b.

A nice sequence or partition xq, X\,..., xn is S-fine if |x, - x,_, | < 8 (i =

1,...,«).
A nice sequence or partition xq, ... , x„ (for /) is oscillating if

(f(Xi) - /(*/-t))(/(*/+i) - /(*,)) < 0      (i = 1, 2,..., n - 1).

Proposition 2. Suppose f £ C[a, b], f is not constant in any interval, and f

is locally increasing or decreasing at a from the right and also at b from the

left.
Then there is a nice oscillating partition for f.

Proof. Let xo = a .
Assume that we defined xo, ... , x, (that is, Xo, ... , x, is a nice partition

for f\[a,Xj]). Suppose that / is locally increasing or decreasing at x, from

the right. These assumptions hold for the first step.

Clearly we can assume that / is locally increasing at x, from the right. We

will distinguish between two cases.
Case A. The function / does not take the value of /(x,-) in the interval

(x,, b]. (It follows that / > /(x,) here.)
In this case, let x,+, be the last global maximum point in [x,, b]. If x,+ , =

b, then the procedure is finished.

Case B. The function / does take the value of /(x,) in the interval (x,, b].

Since / locally increases at x, from the right, there exists a number x\ in

(x,, b) for which f(x\) = f(xi) and f(x) > f(xf) for every x, < x < x\. Let

x,+, be the last global maximum point in [x,, x,']. In this way, x, < x,+, < x\.

In both cases, x,+, is a local maximum point, so if x,+, < b then / is

locally decreasing at x,+, from the right. On the other hand, /|[x,, x,+,] G

&; therefore, the assumptions hold for the next step. We can continue the

procedure, and we will have a nice partition if we reach the end. It is also clear

that this will be a nice oscillating partition.
Therefore it will be sufficient to show that this procedure finishes after a finite

number of steps. Let us suppose, to the contrary, that the procedure is infinite.

Let x„ tend to the limit C . Again we will distinguish between two cases:

Case 1: There exists a step, say the ith, when we used Case A. Since the

point x, we get in this step is the last maximum or the last minimum point

in [x,_,, b], / never takes on the value of f(Xj) in (x,, b]. So at the next
step, Case A appears again; therefore, continuing after this, Case A will always

occur.
We cannot have C = b since there is a left neighborhood of b where b is an

extreme point, so if x„ is in this neighborhood then the procedure is finished

in two steps.
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Therefore C < b. Since / is continuous, f(x„) -* f(C). On the other

hand, the elements of the sequence {/(x„)} are alternating minimum and max-

imum values in an interval containing [C, b]. This implies that f\[C,b] =

f(C), but we assumed that / is not constant in any interval. Therefore this
case cannot happen.

Case 2: Only Case B occurs. Let us suppose that / is locally increasing

at xt from the right. In this case, f(xj) = f(x\) < f(xi+x), x,+, is the last
maximum point in [x,, x\]; so in the next step, x;'+1 > x\ • x,+2 is a minimum

point in [xM, x;+1] and x\ £ [xM , x'i+l], therefore, f(xi+2) < f(x'i) = f(xt).
Continuing this argument, we obtain f(xi) > f(Xj+2) > f(xi+^) > ■■■ . By

similar arguments, /(x,+1) < /(x,+3) < /(x,+s) < ••• . On the other hand,

f(Xj) < /(x,+i), so {/(x„)} cannot be convergent. But f(xn) tends to f(C).

Therefore, we get a contradiction in both cases, so the procedure is finite,
and we proved previously that it gives a nice oscillating partition for /.

Proposition 3. Suppose that S > 0, f £ C[a, b], f is not constant in any

interval, and f is locally increasing or decreasing at a from the right and also

at b from the left.

(a) Then there exists a nice S-fine partition for f.

(b) If we also suppose that f is not monotone in any interval then there
exists a nice oscillating S-fine partition, too.

Proof. Take an arbitrary r5/2-fine partition 'a — yo < ■ ■■ < yn = b of [a, b].

Let z0 = a, zn+x - b. For i = 1, 2,..., n, if / is monotone in [y,_,, y/\
then let z, be an arbitrary interior point of the interval, otherwise let z, be a
local extreme point in (y,_,, y,).

We can apply Proposition 2 for f\ [z,.,, z,]. We can link the nice partitions

that we have so far, so we get a nice S-fme partition for /. If / is not monotone
in any interval then all the z, (i = I, ... , n) are local extreme points. For this

reason, in this case, if we link the nice oscillating partitions then the property

of oscillation transfers, so we get a nice oscillating r5-fine partition.

The following two statements will construct two nice matching sequences for
two matching functions.

Proposition 4. Suppose that f xi g, f is not monotone in any interval, and

d > 0. Then there exists a nice S-fine sequence u0, ux, ... , um for f and a

nice sequence v0, ... , vm for g such that f(uf) = g(vt)  (i — 0, ... , m).

Proof. Again we can assume that f, g £ y. Applying Proposition 3(b) to
/, we know that there exists a nice oscillating <5-fine partition 0 = xn < x, <

••• < xn = 1 for /. Let /i(x,) = f(xf) (i = 0, 1, ... , n) and let /, be
linear between x, and x,+, (i = 0, ... , n - I). We have /, ex g and /j is

piecewise strictly monotone, therefore, /, ~ g by Proposition 1; that is, there
exist k, h £ y such that fx o h = g o k .

Look at the function h (see Figure 3 on the next page). Let a, be the

smallest value in [0, 1] satisfying h(ax) = x,. Let a2 be the smallest value

in [a,, 1] for which the value of h is xo or x2, and generally, if h(at) = Xj

then ai+x is the smallest value in [a,■■, 1] for which the value of h is X/_, or

Xj+i. Since h is continuous, our process terminates after a finite number of
steps, which means that there exists an index / such that h(a/) = 1(= x„) and
h | [ai, 1] >x„_, .
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Figure 3

Let y, be the greatest point in [0, ai+x] satisfying h(yt) = h(at). Let y0 = 0,

fi = 1. It is clear that ai+x > yt > a, and h | [y,, q,+,] g ^  (/ = 1, ... , / - 1).
Let 7 be the index for which h(yt) = h(at) = Xj . Since g o k = f o h, it

follows that

(1) g(fc(y,-)) = A(h(y,)) = fx(Xj) = f(Xj) = f(h(7i))

and

(2) g(k(ai)) = f(h(a,)) = f(Xj) = f(h(at)).

By definition h(ai+l) = xj+e where e = ±1, h([yt, al+x\) = [h(yf), h(ai+x)]
= [x7, x;+£]. On the other hand, xq, ..., x„ is a nice partition for / and

therefore

f([h(7,), h(ai+x)}) = f([xj , xJ+e]) = [f(Xj), f(xj+e)]

U = [/(*(*)),/(A(«i+i))]

and

£([^(7,), fc(«i+i)]) c ^(fc([y,-, a/+i]))

= A(h([yi, ai+[])) = fx([h(yi), h(ai+l)]) = [f(h(yi)), fx(h(ai+x))]

= [g(k(7i)),g(k(ai+l))].

Therefore obviously

(4) g([k(7i),k(aM)]) = [g(k(yi)),g(k(ai+l))].

Equalities (3) and (4) imply that

(5)
f\[h(yi),h(ai+l)]e&   and    g \ [k(yt), k(ai+x)] £ &       (i = 0, ...,/- 1).

Since Xq, ... , x„ is a nice oscillating partition for /, /z(a,) = Xj is a local

extremum of /. We can assume that this is a local minimum point.  In this
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case, f(Xj-X) > f(Xj) < f(xj+x). Let /J, be a maximum point of fxoh = gok

in [a,, y{\, and let Af, be the maximum value here. From the definition,

h([at, y,]) c [x;_,, xj+i] and /i([x;_,, xj+x]) > f(Xj), therefore for all t £
[a,, y{\ we have

g(k(Bi)) = Mi > g(k(t)) = fx(h(t)) > f(Xj) = g(k(ai)) = g(k(7l)).

Therefore

g(k([ai, y,])) C [f(Xj), Mi] = [g(k(a,)), g(k(Bi))].

On the other hand,

g(k([ai, y,])) D g(k([ai, Bi])) D g{[k{a,), k(Bt)]).

So we obtain g([k(at), k(B{)]) = [g(k{on)), g(k(Bt))]. By similar arguments

g([k(Bi),k(yt)]) = [g(k(Bi)),g(k(yi))],

therefore,

(6) g\[k(/3i),k(yi)],g\[k(ai),k(pi)]£&

if k(Bj) ̂  k(yf), k(a{) ̂  A:(^,), which holds if and only if a, ^ y,.
Now h([aj, y,]) c [x;_i, Xj+i] implies /, o A([a,-, y,]) C /i([x;_,, x>+1]) =

f([Xj-X,Xj+\]). Therefore, / takes the value of Mj in [xy_i,xJ+,]. Let
z, be the nearest such point to x7. In this case f([Xj, z,]) = [f(Xj), Bi] =

[f{Xj), f(zt)]. Therefore,

(7) f\[h(ai),Zi] = f\[Zi,h(yi)]e&   ifa.^y,      (i = l,...,/)

and

(8) g(k(Bi)) = Mi = f(Zi)       (i=l,...,l).

Let {Uj} and {v,} be the sequences obtained from the sequences

0 = h(y0), h(ax), zx,h(yx),h(a2), z2,h(y2), ... ,h(a,), z,,h(yt) = 1

and
0 = k(y0), k(ax), k(Bx), k(yx), k(a2), k(B2), k(y2),...,

k(y,),k(B,),k(y,)=l

after omitting the repeating terms. (We have to omit z,, A(y,-), k(Bj), and

k(yt) when a, = y,.)

Equations (5), (6), and (7) show that these are nice sequences for / and

g. Equations (1), (2), and (8) show that /(«,-) = g(vt) (i = 0, ... , m).
Xo < • • ■ < x„ is (5-fine and z, G [Xj_,, x7-+,], so {«,} is <5-fine. Therefore we
have the desired sequences.

The following statement is an almost trivial corollary of the preceding state-
ment.

Proposition 5. Suppose ftxg with neither f nor g monotone in any interval
and S > 0.

Then there exists a nice sequence for f and a nice sequence for g such that

both sequences are S-fine and /(x,) = g(yt)  (i = 0, ... , n).

Proof. We can apply Proposition 4 to /, g, and S, so we get the sequences

{«,} and {vj} . Since f(ut) = g(vt), it follows that f\ [u,, «,+,] xi g \ [vt, vi+x]
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(i = 0, ... , m-l). We can apply Proposition 4 to g\[vt, vi+[], f\[ut, w,+,],

and S instead of /, g, and S. Linking the constructed sequences, we will

obviously get the desired sequences {x,} and {y,} .

Using this statement we can prove that any pair of functions in a large class

of functions is climbable.

Proposition 6. If f, g £ y and neither f nor g is monotone in any interval

then f ~ g.

Proof. Let Sx = 1/2. Let us use the preceding statement for /, g, and Sx ,

we get the nice (5,-fine sequences {x,} and {y,}. For every i £ {0, 1,...,«},

let hx(i/n) = x,, kx(i/n) - yt, and let A, and kx be linear between two such

points.
Let S2 < min{ 1 /22, |x, - x,_, |, |y,- - y,-11 : i = 1, ... , n}. Applying Propo-

sition 5 to the functions f\ [x,_,, x,] ex g | [y,_,, y,] and S2, we get the nice

sequences {xjj}"L0 and {yij}"L0- Let

hi(- + -l—]=xtj,      k2l- + -^—)=yij,
\n     n-nxJ J \n     n-nx) J

and let h2 and k2 be linear between two such points.

Let Si < min{l/23, \xiti -x,j_,|, \yitj -y,j-i| : i £ {1, ... , n}, j £
{1, ... , «,}} and continue this procedure infinitely. We get the functions

h\, h2, hi, ...  and kx, k2, ki, ...  in y.
In /j < l2 then |A/, - htl\, \ktl -k^\ < S^ < 1/2'1 , therefore, {hi} and {kt}

are uniformly convergent. Denote their limits by h and k , then h, k g y.

At the point

l\ l2 lm
t=   - +  -£-+--- +- ,

we have /zOT(0 = /?m+i(0 = hm+2(t) = ■ ■ ■ , so A(f) = Am(f) and clearly A:(f) =

/cm(r), too. Therefore

/o h(t) = fohm(t) = f(xh ,...,,J = g(yiu...,im) = g o km(t) = g o fe(f).

The number Sm was chosen so small that for every (/',, ... , im-X) we have

«,,      im_, > 1. For this reason the set of points

£l + ... +-^-
" n."/,,...,«„-!

is a dense set in [0, 1]. Therefore the continuous functions fo h and g o k

are equal in a dense set, which means f oh = g ok ,in other words, / ~ g .

After this it will be easy to prove the promised theorem.

Theorem. If f, g £ 5F and neither f nor g is constant in any interval then

f~g-
Proof. Let us modify / in every maximal monotone portion, [a, b] c [0, 1 ],

as follows. We replace /in [a, b] by a function that is not monotone in any

subinterval of [a, b], equal to f at the points a and b , and its range is the

interval [f(a), f(b)]. Denote the function we obtained by fx. Put f2 = f~xofx

in the (strictly) monotone portions of /, and let f2 be the identity function
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otherwise. This definition makes sense, /, = fo f2 , /,, f2£SF', and /, is not

monotone in any interval.

We can do the same with g, and we get the functions gx and g2 . According

to Proposition 6, there exists hx and kx in y such that fxohx = gx o kx.

Let h = fi ohx , k = g2okx . Then h, k £^ and

foh = fof2ohx=fxohx=gxokx = gog2okx=gok,

which means that f ~ g.

Remarks. This theorem (in fact, also Proposition 6) shows that two typical

functions from y are climbable. Of course, it would be interesting to char-

acterize nonclimbable pairs (/, g). Our conjecture is that there is no simple

characterisation, maybe the set {(f, g)\f, g £^, fV g} is not even a Borel
subset of y x y.
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