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ABSTRACT. Let E be the equivalence relation determined by the orbits of a
group G actingonaset X andlet K be a group. Using a “sandwich” function
9: X/E—- K, M(X,G,K,9)={f: X - K|f is constant on each E-class}
is a near-ring, the near-ring of invariants determined by (X, G, K, ¢) . In this
paper we continue the study of the transfer of information between the structure
of the near-ring of invariants and properties of the group action (G, X), the
group K, and the function ¢: K — X/E.

I. INTRODUCTION

Let E be an equivalence relation on a set X and let (K, +) be a group,
not necessarily abelian, with identity 0. Let ¢: K — X be a function and
let M := MX,E,K,p) ={f: X — K|f is constant on each E-class in
X} . Under function addition, (M, +) is a group. When we define a sandwich
multiplication * on M by fxg = feg (the usual composition of functions),
f,g € M,then (M, +, %) is a (right) near-ring, a subnear-ring of the “full”
sandwich near-ring studied by Fuchs [1]. In fact, if E is the identity equivalence
relation on X then M is the full sandwich near-ring M (X, K, ¢) of Fuchs.
(Also, see Fuchs and Pilz [2].)

Let X be a group and let S be a group acting on X. We let E be the
equivalence relation determined by the orbits of the action of S on X, take
K = X, and take ¢ to be the identity map on X. Then M(X, E, K, ¢) is
the near-ring of invariants studied in [3].

As a further interpretation let E be the conjugacy relation on a group G
determined by the inner automorphisms of G. Suppose we have a representa-
tion p of G by matrices over a field K. Then M(G, E, K, ¢) contains the
near-ring generated by the characters of the representation p.

We next show that the structure of M(X, E, K, ¢) is related to a problem
of Wielandt [6]. To this end, suppose a group G actsonaset X, (g, x) — x8,
x € X, g € G. Following Wielandt, we say @ is a k-relationon X if ® isa
subset of X*, the Cartesian product of X with k factors. The k-relation ®
is said to be G-invariant, denoted by ® € k —rel(G), if ¢ =@ forall g€ G,
where ®¢ = {(af, ..., e{)(ai, ..., o) € D}.
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Let K be a group, |K| > 2, and let M(X*, K) = {f: X* — K}, a group
under function addition. For g € G, f € M(X*, K) we let g act on f

1

by f8(x) = f(x8 ), x € X¥. It is straightforward to verify that G acts as
a group of automorphisms of M(X*, K). For ® C X* defined a function
fo: Xk - K by fe(x) =0 if x € ® and by fp(x) = a if x ¢ ® where
a is some nonzero element of K. Then fy isin M(X*, K) and f3 = foe
for each g € G. In fact, if y € ®% then y = x& for some x € P, so
W) = fo((x4)¢7") = fo(x) = 0; while if y ¢ ¢ then y& ¢ @, so
By)=a+#0,ie, f§ = fos asdesired.

If we take Fix((G) = {f € M(X*,K)|f¢ = f forall g € G} then ® €
k —rel(G) & fo € Fixi(G). For ® € k —rel(G) & P& = PVg € G. It follows
from the above discussion that f§ = fo. But f§ = fp also implies @& = @,
so we have ® € k —rel(G) is equivalent to fp € Fix,(G).

For f € M(X*,K) and c € K define ®(f = ¢) = {x € X¥|f(x) = ¢},
which is a level surface for f.

Theorem 1.1 [6]. Let a group G acton aset X andlet E denote the equivalence
relation determined by the orbits of G. The following are equivalent:

(1) f € Fix(G);
(2) feM(X*, E,K,0);
(3) ®(f =c) €k —rel(G), Yce K.

Proof. (1) = (2). Let f € Fix,(G) and let x, y be in the same orbit de-
termined by G acting on X . Then x&' = y for some g € G so f(y) =

f(x8") = f8(x) = f(x) since f € Fix(G), hence fe M(X*, E, K, ¢).

(2) = (3). Let x € ®(f = ¢). We show x& € ®&(f = ¢) for each g €
G. Since x and x& are in the same orbit, f(x&) = f(x) = ¢ since f €
M(Xk E,K,p). Thus x8 e ®(f =c) so (®(f =c))® CD(f =c). But then
O(f=c)=({(P(f = ))& )& C (d(f = c))¢ gives the reverse inclusion.

(3) = (1). Let f: Xk — K be such that ®(f = c¢) € k — rel(G) for each
ceK,andlet g€ G, x € X*. If f(x)=>b then x € ®(f = b). Therefore
x8 ' e ®(f =b). Thus f(x)=b = f(x¢ ') = f&(x). Since x is arbitrary,
f=f%,s0 f € Fix(G).

If we refer to the elements of M(X, E, K, ¢) as invariant functions, we
have shown that a level surface of an invariant function is an invariant k-
relation and conversely. Thus problems in the study of invariant relations are
equivalent to problems in M (X, E, K, ¢). It is hoped that information about
the structure of this near-ring will provide information about invariant rela-
tions and ultimately information about permutation groups via the Wielandt
program.

In our final result of this section we show that when considering structural
properties, the near-ring of invariants, M (X, E, K, ¢) can be considered a
full sandwich near-ring.

Theorem 1.2. Let E be an equivalence relation on a set X, let K be a group,
andlet M(X, E, K, ¢) be the near-ring of invariants. Then M(X , E, K, ¢)
is isomorphic to a full sandwich near-ring M(X/E, K, y).

Proof. Let n: X — X/E be the canonical map. Then for g: X/E — K, gn
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maps X into K. If x, y are elements of X in the same E-class then n(x) =
n(y),so gn € M(X, E, K, ¢). We also note that ¥ := ng maps K into
X/E . We thus have a function I': M(X/E,K,y) > M(X,E, K, ¢), I'(g) =
gn. For f, g€ M(X/E,K,y), T(f+8) =T(f)+I(g) and I'(fxg) =
(fxg)n=fwgn= fnegn=T(f)xI'(g); thus I is a near-ring homomorphism.
If g € KerI" then gn = 0 in M(X, E, K, ¢), which means g is 0 in
M(X/E, K, y). Further I is surjective, for if h € M(X, E, K, ¢), we let
X/E = {E,} and define h: X/E — K by il(Ea) = h(x) where x is any element
in E,. The function # is well defined in M(X/E, K, y) and T'(h) = h. Thus
I" is an isomorphism as desired.

For the remainder of the paper we use M(X/E, K, y) with |X/E| > 1.
We conclude this section by giving a brief outline of the paper. In the next
section we characterize when M := M(X/E, K, y) has an identity, and in
this case, we determine the group of units. We turn in §III to the internal
structure, investigating when M is a simple near-ring and when M has no
(M, M)-subgroups other than M and the constant subnear-ring M, . In the
final section we turn to a more external viewpoint and characterize when K is
a v-primitive M-group, v =0,1, 2.

I1. IDENTITY AND GROUP OF UNITS

In this short section we determine when M = M(X/E, K, y) has an iden-
tity and if this is the case we characterize the group of units of M .

Theorem I1.1. Let M = M(X/E, K, v). Then M has an identity & y: K —
X/E is a bijection.
Proof. Suppose y is a bijection and define e: X/E — K by e(E,) = y~1(E,),
VE, € X/E. For fe€ M and E, € X/E, (fxe)E, = fyy 1 (E,) = f(E,)
and (e x* f)(E,) =e(wf(E,) = v~ Y (wf(E,) = f(E,). Hence e is an identity
for M. Conversely, suppose ¥ is not a bijection. If y is not surjective then
for some Eg € X/E, Eg ¢ w(K). Define h € M by h(Eg) = kg € K and for
E, # Eg, h(E,) = k; # ko. There is no function k € M such that Axk = h
so there are no right identities. In a similar manner, if y is not injective,
say w(ki) = w(ky), ki # ka, then if we define g € M by g(E,) = k; and
g(Eg) =k for B # o' we find there are no left identities.

We now suppose M has an identity, e, so from the above theorem, y is
a bijection. Thus for each f € M(X/E, K, vy), fv e M(K)={g: K — K}.
We now show that the function ®: M — M(K), f— fy is an isomorphism.
Note first that & is a homomorphism, for if f, g € M then ®(f x g) =

(f*&v = (fvgy = fygy = O(f)P(g). Further, if f € Ker® then
fw=0k,s0 f= fwy ! =0p~! =0. Hence ® is injective. Finally, for
gEM(K), gy~' € M and P(gy~')=g.

Theorem I1.2. If M = M(X/E, K, y) has an identity then M = M(K).

If we let Un(M) denote the group of units of M and let Perm(K) denote
the bijections in M(K) then we have

Corollary I1.3. For M = M(X/E, K, y), Un(M) & Perm(M).

We note that if C(n) denotes the cyclic group of order n and if X is a set
with an equivalence relation E such that |X/E| = n, then, if we let ¥ be any
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bijection, y: K — X/E, we have Un(M) = S, where S, is the symmetric
group on n-symbols and M = M(X/E, C(n), v). In this case the identity for
the near-ring M is not the identity function.

ITI. SIMPLICITY AND (M, M)-SIMPLICITY

We next turn to a study of the internal structure of a near-ring M(X/E, K, y)
of invariants. We are particularly interested in the two-sided ideals of M and
the (M, M)-subgroups of M, i.e., those subgroups (B, +) of (M, +) such
that MB C B and BM C B. To this end, the set Z = {H < K|H +y C
v~ ly(y) Vy € K} will be very useful.

We note that {0} € Z, and by taking y = 0, we see that if H € Z then
H C y~'y(0). Further, the translation property, H +y C y~'w(y) implies
that each class w~!w(y) is a union of cosets of H. In fact, y~ly(y) =
Uy =y (H+X) . Forif w(x) = y(y) then y~'y(x) =y~ 'y (y),s0 H+x C
v~ 'y(y);if ey 'y(y) then y(u)=y(y) and u€ H+u.

Let H;, H, € Z and define H, < H, if H, C H,. It is straightforward
to show that H, N H, € 7Z . Further, for each h, € H, and each y € K,
Hy+ (hy+y) Cwly(y). Since H, € Z it follows that y(h, +y) = w(y),
so we have H, + H, € 7 . Thus 7 is a lattice with a unique minimal element
{0} . Note also that K € Z if and only if |y (K)| =1, so, in general, K ¢ #Z .
However, there is always a unique maximal element in % . The existence of
maximal elements follows from Zorn’s lemma. For, if & = {H,} is a chain in
% then |JH; € % . Hence % has maximal elements. On the other hand, if
H', H"” are maximal in % then, since H' + H' € % , H = H" .

Fuchs [1] has described the ideals of M(Y, K, y) for any set Y and has
given necessary and sufficient conditions for the near-ring M(Y, K, ) to be
simple. Further, in [3], with X = K, with |X/E| < oo, and with ¥ equal
to the canonical map y: K — K/E, we determined the ideals of M :=
M(K/E, K, y) as well as the radicals J,(M) and the quotient structures
M/|J,(M), v=0,1,2.

We return to the general situation. Suppose |K|=2. If y(K) # X/E then
Anny (y(K)) = (0: w(K))n is an ideal of M with {0} G Anny(w(K)) G M.
If y(K) = X/E then we have that y is a bijection since we do not have
|X/E| = 1. Therefore, from Theorem I1.2, M = M(K) = M(Z,), which is not
simple.

Theorem IIL.1. If |K| =2 then M(X/E, K, y) is not simple.

The next result follows from Theorem 6.1 of [1]. We also provide a short
sketch of the proof.

Theorem IIL.2 [1, 3). If |K| > 3 and |X/E| < oo then M(X/E,K, y) is
simple & y is surjective and % = {{0}}.

Proof (Sketch). If w(K) # X/E then Anny(w(K)) is an ideal of M with
{0} C Anny (w(K)) S M. If {0} C H e % then I = {f € M|f(X/E) C H}
is an ideal of M with {0} C I C M . For the converse, let 4 be an ideal of
M. If {0} S AC M and A ¢ M, then as in [3], one gets {0} # He U, a
contradiction. If {0} ¢ A C M and A4 D M, then, again following [3], one
gets {0} # w~'w{0} and y~'w{0} € Z, also a contradiction.
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Now let B be an (M, M)-subgroup of M. We note that for each a € K
the constant function ¢,: X/E — K is in B, since for each b € B, ¢, =
caxb € B. Hence M, is contained in each (M, M)-subgroup of M. We
say M is (M, M)-simple if the only (M, M)-subgroups of M are M and
M. . We turn to the problem of characterizing those M(X/E, K, y) that are
(M, M)-simple.

Suppose first that y: K — X/E is not surjective. If |w(K)| # 1 then
|X/E| > 3 since we know |X/E| # 1. Let T = {f € M|f is constant on
w(K)} and note that 7 < M with M, C T. Since y(K) # X/E, T 2 M,,
and since |y (K)| > 1, we have that T # M. Let E,, Eg € w(K), te T,
and f € M. Then (f *t)(E,) = (f=t)(Eg), hence fxt € T. On the other
hand, t* f € M, foreach t € T, f € M,so T is an (M, M)-group with
MGT g M, ie., M isnot (M, M)-simple.

If |w(K)| =1 then, foreach f, ge M, f+ge M. Infact, for E,, Eg €
X/E, (f x8)(Es) = fW(8Es) = fw(gEp) = (f * &)(Ep). From this we find
thatif 7 < M with T D M, then T isan (M, M)-subgroup of M. Let K’
be a subgroup of K, {0} S K’ G K and let E, € X/E. Define A(E,; K') =
{feM|f(E,)=0 and f(E,) €K', a# y}. Then A(E,; K') < M and so in
this situation A(E,; K')+ M, isan (M, M)-subgroup of M . Since |X/E| > 1
it follows that A(E,; K') # {0}, hence A(E,; K') + M, 2 M. . Since K' # K,
say ko € K\K', the function g: X/E — K defined by g(Ez) = ko, B # 7,
and g(E,) =0 isin M butnotin A(E,; K')+M,. Hence M isnot (M, M)-
simple if such a K’ exists, i.e., M isnot (M, M)-simple unless K is a cyclic
group of prime order.

Suppose |y (K)| = 1 and |[X/E| > 3. We let E, € X/E and note that
Ann(X/E — {E,}) is a subgroup of M ; thus Ann(X/E — {E,}) + M, is an
(M, M)-subgroup of M properly containing M, . Let {E,, Eg,E;} C X/E.
If A is any function such that h(Ejz) # h(E,) then h ¢ Ann(X/E—{E,})+M..
Hence M is not (M, M)-simple.

Before continuing the discussion of (M, M)-simplicity we introduce some
notation. When |X/E| = n < co we can index the classes to obtain X/E =
{E1, E2, ..., Eq}. Then each function b € M can be represented as an n-
tuple, b = (by, ..., b,) where b(E;,) = b;, i =1,2,...,n. Thus M =
XL, K=Kx---xK.

We now return to |w(K)| = 1. We have seen that if |[X/E| <2 then M is
not (M, M)-simple. Suppose |X/E|=2,say X/E = {E, E,}. If we consider
Ann(X/E — {E;}) = Ann(E,) we find AnnE; = {0} x K. Thus for each
y €K, (0, -y) € Ann(E,) and (y,0) = (0, —y) + (v, ¥) € Ann(E}) + M.
Hence Ann(E,) + M. = M . Therefore, if T is an (M, M)-subgroup of M
and b = (b, by) is a nonconstant function in T, then (0,5, — b)) € T,
by — by # 0. If K is cyclic of prime order then {0} x K C T, so, as above,
M =T . Since we have already shown that |y(K)| =1, |X/E| = 2, and that
M being (M, M)-simple implies K must be cyclic of prime order, we have
established the following result.

Theorem II1.3. Let |X/E| =2 and |y(K)| = 1. Then M is (M, M)-simple
& K is cyclic of prime order.

We have also established above that when y is not surjective and |X/E| > 3
then M is not (M, M)-simple.
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Next, we take {0} # H € Z and define S(H) = {f € M|f(X/E) C H}.
Since H € 7, it is straightforward to verify that S(H) is an ideal of M,
consequently S(H) + M, is an (M, M)-subgroup. In fact, for f € S(H),
Ca€EM.,and geM, gx(f+c,)—g+xca € S(H),s0 g*(f+c,) € S(H)+M,.
Since (S(H) + M. )M C S(H) + M., we have indeed that S(H)+ M, is an
(M, M)-subgroup of M. If H # K, say kg € K — H, then the function
g: X/E — K defined by g(E,) =0, g(Eg) =ko for a # #,isin M but not
in S(H)+M,,so M isnot (M, M)-simple. If H =K then K+0 C y~'y(0)
implies |w(K)| = 1. When |X/E| > 3 we know M is not (M, M)-simple.
We have established part of the following characterization result.

Theorem II14. If 3<|X/E|=n<oo then M =M(X/E,K,y) is (M, M)-
simple & y is surjective and 7Z = {{0}}.

Before showing that the conditions are sufficient we single out a lemma.

Lemma IILS. Let |X/E| = n < oo and let B be an (M, M)-subgroup of
M. If w: K — X/E is surjective and for some i, i € {1,2,...,n}, A4;:=
Ann(U;, Ej) C B, then B=M.

Proof. Without loss of generality we take i = 1. Thus, 4 = K x {0} x --- x
{0} C B. Since y is surjective, VE; € X/E, 3k; € K such that y(k;) = E;,
i=1,2,...,n.Let h: X/E — K be defined by h(E;) =k, and h(E;) =k,
for i # j. Then for x € K, (x,0,...,0) € B and (x,0,...,0)xh =¢f
where ef(E;) = x and ef(E;) =0 for i # j. But then for (x;,...,x,) € M,
(Xt,....,Xn)=€'+---+e" € B,ie, M=B.

Proof of 111.4. Let w be surjective and Z = {{0}}, but assume there is an
(M, M)-subgroup B of M with M. G B G M. Let b= (by,..., b,) bea

nonconstant functionin B. Then ' =b—(by, ..., b)) = (0, by—by, ..., by—
by) isin B. We show each b;— b, € y~'y(0). Since y is surjective, 3k; € K
with y(k;)) = E;, i = 1,2,...,n. Define g € M by g(E;) = k; and

g(E;) =k for i# 1. Then b”" =b'+xg € B with b" = (bj—b,,0,...,0).
Suppose b; — by ¢ w~'y(0), say w(b; — by) = E; # w(0). Then, for x € K,
ef+b" € B and ¢f+b" = (x,0,...,0). This implies 4, = Ann(U#I Ej))C B,
so by the above lemma, B = M. But this contradicts B G M so we have
bj—b €y ly(0) for j=1,2,...,n.

For be B, b= (b, ..., b,) wesay b; belongsto b. Define H = {b; —
bi|bj, b; belong to some b € B}. Note first if b; —b; € H then —(b; — b;)
= b; — b; is also in H. Now let b; — b;, ¢, —c¢» be in H. From above,
(bj —bi,0,...,0) and (¢; —Cm, 0, ..., 0) arein B which means (b; — b; +
(c;—¢m),0,...,0) isin B,so bj—b;+c;—cm € H. Hence H is closed under
addition, which means H < K. To show H < K, let b; — b; € H. Thus for
some b€ B, b=(b],... ,bi,...,bj,...,b,,),SO Ck+b=(k+b1,...,k+
biy...,k+bj,...,k+b,) € B. Hence k+b;— (k +b;) € H, which gives the
result.

Now let y € K and b; — b, € H. Then (b; - b;,0,...,0) € B as does
(bj—bi+y,y,...,y). Suppose bj—b;+y ¢ w'w(y),say w(bj—bi+y)=
E; # y(y). Then, as above, we get 4; C B and, by IIL.5, B = M, again a
contradiction to B G M . Therefore we must have H +y C y~ly(y) for each
y € K. We have found that H €  and, since B 2 M., that H # {0}, which
is a contradiction to % = {{0}} . This means that M must be (M, M)-simple.
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It remains to complete the characterization for the situation in which |X/E| =
2. Thus we take |X/E| =2 and y surjective. In the above proof we showed
that % = {{0}} implies M is (M, M)-simple. Furthermore, the discussion
prior to III.4 points out that if M is not (M, M)-simple then there exists
{0} #H e Z . If H =K then |y(K)| = 1, which is impossible since y is
surjective and |X/E|=2.

Corollary II1.6. Let |X/E| =2 and |w(K)|=2. Then M is (M, M)-simple
e % = {{0}}.

IV. AcTiIoONOF M oON K

For any group G and any subnear-ring N of the near-ring M(G) of map-
pings on G, there is a natural action N x G — G of N on G so that G is an
N-group. One then investigates various properties of this action. In this section
we show that there exists a “natural” action of M := M(X/E, K, y) on K
and we initiate a study of the M-group K. Specifically, we characterize when
K is v-primitive, v =0, 1, 2.

We first give our action of M on K. Let f € M, k € K and define
MxK — K by (f, k)~ f(y(k)), which we denote by f-k. For f,ge M
and ke K, (f+g)-k=/f-k+g-k while (f*g)-k=(f*g)(y(k)) =
(fwg)w (k) = f(w(g(y(k)) = f-&(w(k) = f-(g-k). Hence K is an
M-group.

Suppose f - K = {0} for some f € M. If y is surjective then, since
Sf(w(k)) =0 foreach k € K, f is the zero map in M . This shows that if y
is surjective then the action of M on K is faithful. If y is not surjective, one
can find g € M with g(y(K)) = {0} and g(X/E — w(K)) # {0} . Therefore,
g+-K = {0} and X is not a faithful M-group.

Lemma IV.1. For M = M(X/E, K, v), K is a faithful M-group <& v is
surjective.

Lemma IV.2. Foreach ke K, M-k =K.

Proof. For each a € K the constant function ¢, isin M and ¢,k = a.
Hence K C M - k.

From this lemma we note that K is a strongly monogenic N-group, conse-
quently, K is type O if and only if K is a type 1 [5, p. 77].

Lemma IV.3. Foreach k € K, My-k = {0} if k € w—'y(0) and K otherwise.

Proof. We first note that g € My & g+x0 =0« gw(0)=0. Now My -k =
{g(w(k))lg € Mo}. If k € y~'y(0) then w(k)=y(0),s0 g(y(k))=0,ie,
My -k ={0}. If y(k)# w(0) then for any k' € K there exists g € M, with
g(w(k))=k',hence My-k=K.

If K is a 2-primitive M-group then K is a faithful AM-group and of type
2 where “type 2” means that K has no nontrivial Mj-subgroups. Thus if K
is not of type 2 then there exists a subgroup 4 of K, {0} # 4 # K with
My-A C A. From the above lemma this means 4 C y~'w(0). The converse is
also true. For if C is a subgroup of K {0} # C # K ,suchthat C C y~'y(0),
then again from the above lemma, M, .-C C C, so K is not of type 2.
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Lemma IV4. The group K is an M-group of type 2 < there are no nonzero
subgroups of K contained in y~'y(0).

We say w~'y(0) is subgroup free if the conditions of the above lemma hold.
Combining Lemmas IV.1 and IV.4 we obtain

Theorem IV.S. For M = M(X/E, K, v), K is a 2-primitive M-group & y
is surjective and w~'y(0) is subgroup free.

We turn next to 1-primitivity and O-primitivity. We recall that for any near-
ring N, an N-group G is O-primitive if G is a faithful N-group and G is of
type 0, i.e., G is a simple N-group. From the remark following Lemma IV.2,
in our case, type 0 is equivalent to type 1 so we have that K is 1-primitive if
and only if K is O-primitive.

Suppose K is not a simple M-group and let 4 be an ideal of y K, {0} #
A # K. By definition, 4 < K. Moreover, for each f € M, k € K, and
a€A, f-(a+k)- f-k € A. Assume for some k' € K and a’' € 4 that
w(a +k') # w(k'). Then, for x € K, define f,: X/E — K by fi(y(k'))=0
and fiE, =x, E, # w(k'). Then f.-(a' +k')— fx - k' = fi(w(a@ + k")) —
fx(w(k')) = x, a contradiction to 4 # K . This means that y(a + k) = y(k),
foreach ke K, ace A, hence Ac%.

Now let K be O-primitive. Since K is a faithful M-group, w is surjec-
tive. Assume # # {{0}}, say {0} # B € Z . Since B € Z , it follows that
BJIK. Let fe M, be B, ke K and consider f-(b+k)—-f-k =
fw(b+k))— f(wy(k)). Again, since B € Z , it follows that y(b+ k) = w(k),
so f-(b+k)—f-k=0¢€ B. Thus B is a nonzero ideal of K and, since K
is O-primitive, B = K. But, as we have seen, when y is surjective, K ¢ Z .
We conclude that % = {{0}}. We have established the following result.

Theorem IV.6. Let M = M(X/E, K, y). The following are equivalent:
(1) mK is O-primitive,
(i1) pK is l-primitive;
(ii1) w is surjective and #Z = {{0}}.

We combine Theorems II1.2, II1.4, and IV.6 to obtain our main characteri-
zation result.

Corollary IV.7. Let M = M(X/E, K, y) with 3 <|X/E| < co. The following
are equivalent:
(1) mK is O-primitive,
(1) mK is l-primitive;
(iii) M is a simple near-ring;
(iv) M is (M, M)-simple;
(v) w is surjective and % = {{0}}.

In the proof of Theorem IV.6 we showed that if 4 is an ideal of »K then
Ae€eZ or A=K and conversely, if Be Z U{K} then B is an ideal of K.
This gives a determination of the ideals of 5K .

Corollary IV.8. If #(pK) denotes the lattice of M-ideals of yK , then there
exists a lattice isomorphism between 7 (yK) and % U{K}.
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