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Abstract. Let E be the equivalence relation determined by the orbits of a

group G acting on a set X and let AT be a group. Using a "sandwich" function

q>: X/E -» K , M(X, G, K, </>) = {/: X -* K\f is constant on each £-class}
is a near-ring, the near-ring of invariants determined by {X, G, K, <p). In this
paper we continue the study of the transfer of information between the structure

of the near-ring of invariants and properties of the group action (G, X), the

group K , and the function <p: K —* X/E .

I. Introduction

Let E be an equivalence relation on a set X and let (K, +) be a group,

not necessarily abelian, with identity 0. Let <p: K —» X be a function and

let M := M(X, E, K, <p) = {/: X -» K\f is constant on each is-class in

X} . Under function addition, (M, +) is a group. When we define a sandwich

multiplication * on M by f*g = f(pg (the usual composition of functions),

f, g e M, then (M, +, *) is a (right) near-ring, a subnear-ring of the "full"

sandwich near-ring studied by Fuchs [1]. In fact, if E is the identity equivalence
relation on X then M is the full sandwich near-ring M{X, K, <p) of Fuchs.

(Also, see Fuchs and Pilz [2].)
Let X be a group and let S be a group acting on X. We let E be the

equivalence relation determined by the orbits of the action of S on X, take
K = X, and take q> to be the identity map on X . Then M(X, E, K, <p) is

the near-ring of invariants studied in [3].
As a further interpretation let E be the conjugacy relation on a group G

determined by the inner automorphisms of G. Suppose we have a representa-

tion p of G by matrices over a field K. Then M(G, E, K, <p) contains the

near-ring generated by the characters of the representation p.

We next show that the structure of M(X, E, K, q>) is related to a problem

of Wielandt [6]. To this end, suppose a group G acts on a set X, (g, x) i-> x8 ,

x e X, g e G. Following Wielandt, we say <1> is a fc-relation on X if <P is a
subset of Xk , the Cartesian product of X with k factors. The k-relation O

is said to be G-invariant, denoted by Oefc- rel(G), if <Pg = <J> for all g e G,

where <D* = {(af , ... , a{)\{ax, ... , ak) £ <D} .
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Let K be a group, \K\ > 2, and let M{Xk, K) = {/: Xk ^ K}, a group

under function addition. For g e G, f G Af (Xfc, A") we let g act on f

hy f8(x) = f(xg ), x 6 Xk . It is straightforward to verify that G acts as

a group of automorphisms of M(Xk , K). For & C Xk defined a function

fa: Xk -> A~ by ./<i>(x) = 0 if x G O and by /*(x) = a if x £ <D where
a is some nonzero element of AT. Then f® is in Af (Xk , AT) and f^ — f<^s

for each g e G. In fact, if y G 0* then y = xg for some xeO.so

/JOO = /•((**)*"') = Mx) = 0; while if j; £ 0* then ^"' f <J>, so
/Kj) = ^0, i-e., /| = /** as desired.

If we take Fixfc(G) = {/ g A/(A"*, K)\fg = f for all g £ G} then O g
fc - rel(G) «*• /* € Fix^(G). For <D G fc - rel(G) <» <D* = <DV# e G. It follows
from the above discussion that fq,=ft>. But f£ = ft> also implies <I>£ = O,
so we have Oefc- rel(G) is equivalent to f& G Fix^(G).

For / G M(Xk ,K) and c eK define <&(/ = c) = {x G A*|/(x) = c},
which is a level surface for /.

Theorem 1.1 [6]. Let a group G act on a set X and let E denote the equivalence

relation determined by the orbits of G. The following are equivalent:

(1) feFixk(G);
(2) feM(Xk,E,K,(p);
(3) <&(/ = c) G k - rel(G), Vc G K.

Proof. (1) => (2). Let / G Fixfc(G) and let x, j; be in the same orbit de-

termined by G acting on X. Then xg = y for some g G G so /(y) =

/(x«~') = fg(x) = f(x) since / G Fixfc(G), hence / G M(Xk , E, K, <p).
(2) =*■ (3). Let x G <J>(/ = c). We show x* g <!>(/ = c) for each g g

(7. Since x and xg are in the same orbit, f{xg) = f(x) = c since / G
M{Xk ,E,K,q>). Thus x* G <D(/ = c) so (<D(/ = c))« C <&(/ = c). But then

0(/ = c) = ((0(/ = c))£~')g C (0(/ = c))g gives the reverse inclusion.

(3) => (1). Let f:Xk^K be such that <D(/ = c) € fc - rel(G) for each
c G A:, and let g e G, x G Xk . If /(x) = b then x G 0(/ = b). Therefore

x*~' G <D(/ = b). Thus f{x) = b = /(x^1) = /*(*). Since x is arbitrary,

/ = /s, SO /eFixt(G).

If we refer to the elements of M{X, E, K, <p) as invariant functions, we

have shown that a level surface of an invariant function is an invariant k-

relation and conversely. Thus problems in the study of invariant relations are

equivalent to problems in M(X, E, K, <p). It is hoped that information about

the structure of this near-ring will provide information about invariant rela-

tions and ultimately information about permutation groups via the Wielandt

program.

In our final result of this section we show that when considering structural

properties, the near-ring of invariants, M(X, E, K, <p) can be considered a

full sandwich near-ring.

Theorem 1.2. Let E be an equivalence relation on a set X, let K be a group,

and let M{X, E, K, <p) be the near-ring of invariants. Then M{X, E, K, <p)

is isomorphic to a full sandwich near-ring M(X/E, K, >//).

Proof. Let n: X —► X/E be the canonical map. Then for g: X/E —> K, gn
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maps X into K. If x, y are elements of X in the same £-class then n(x) =

n{y), so gn e M(X, E, K, q>). We also note that y/ :- n<p maps A" into

X/E. We thus have a function T: M(X/E, K, y/) -> Af(X ,E,K,<p), T(g) =

^. For /, g G il/(*/£, A", ̂ ), T(/ + g) = r(/) + T(^) and T(/ * g) =
if*g)tl = /V<?'7 = fn(Pgn = r(/)*T(g); thus r is a near-ring homomorphism.
If g G KerT then gn = 0 in A/^is, A", p), which means g is 0 in
M{X/E, K, y/). Further T is surjective, for if /? g M(X, E, K, y>), we let

X/E1 = {£Q} and define h: X/ii -» A" by h(Ea) = h(x) where x is any element

in Ea . The function h is well defined in M(X/E, K, y/) and T(A) = h . Thus
T is an isomorphism as desired.

For the remainder of the paper we use M(X/E, K, y/) with \X/E\ > 1.

We conclude this section by giving a brief outline of the paper. In the next

section we characterize when M :- M(X/E, K, y/) has an identity, and in

this case, we determine the group of units. We turn in §111 to the internal

structure, investigating when M is a simple near-ring and when M has no

(M, M)-subgroups other than M and the constant subnear-ring Mc. In the

final section we turn to a more external viewpoint and characterize when K is
a v-primitive M-group, v = 0, 1,2.

II. Identity and group of units

In this short section we determine when M = M(X/E, K, y/) has an iden-

tity and if this is the case we characterize the group of units of M.

Theorem II.1. Let M = M(X/E, K, y/). Then M has an identity «• y/: K —>
X/E is a bisection.

Proof. Suppose y/ is a bijection and define e: X/E -+ K by e(Ea) = y/~i(Ea),

VEa G X/E. For / g M and Ea g X/E, (f * e)Ea - fyiyj-x{Ea) = f(Ea)
and (e * f){Ea) = e{y/f(Ea) = y/~\y/f{Ea)) = f{Ea). Hence e is an identity

for M. Conversely, suppose y/ is not a bijection. If y/ is not surjective then

for some Ep G X/E, Efi £ y/{K). Define h G M by h{Efi) = ko G A" and for
Ey ̂  Ep , h{Ey) = k\ ^ ko. There is no function k G M such that h*k - h
so there are no right identities. In a similar manner, if y/ is not injective,

say y/{k\) = y/iki), k\ / kj, then if we define g g M by g(Eai) = k\ and
g(is£) = &2 for ft ^ a' we find there are no left identities.

We now suppose M has an identity, e, so from the above theorem, y/ is

a bijection. Thus for each / G M{X/E, K, y/), fy/£ M{K) = {g:K ^K}.
We now show that the function <1>: M —* M(K), f t-+ fyi is an isomorphism.

Note first that O is a homomorphism, for if f, g g M then <&{f * g) =

if * g)W = (fvg)V = fVgV = ®(f)®(g)- Further, if / G Ker<D then
fyi = Ojt, so / = fy/y/~x — 0y/~x = 0. Hence O is injective. Finally, for
g G M(K), gy/~x G M and <P(gy/_1) = g .

Theorem II.2. If M = M(X/E, K, y/) has an identity then M Ql M{K).

If we let Un(Af) denote the group of units of M and let Perm(A') denote

the bijections in M(K) then we have

Corollary II.3. For M = M{X/E, K, y/), Un(M) SI Perm(Af).

We note that if C(n) denotes the cyclic group of order n and if X is a set

with an equivalence relation E such that \X/E\ = n , then, if we let y/ be any
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bijection, y/: K —* X/E, we have Un(Af) = S„ where Sn is the symmetric

group on ^-symbols and M = M(X/E, C(n), y/). In this case the identity for

the near-ring M is not the identity function.

III. Simplicity and (M, A/)-simplicity

We next turn to a study of the internal structure of a near-ring M{X/E, K, y/)

of invariants. We are particularly interested in the two-sided ideals of M and

the (M, A/)-subgroups of M, i.e., those subgroups (B, +) of (M, +) such

that MB C B and BM C B. To this end, the set %f = {H < K\H + y C
y/-ly/(y)  V> G A"} will be very useful.

We note that {0} G ^, and by taking y = 0, we see that if H e % then

H C y/~ly/(0). Further, the translation property, H + y C y/~ly/{y) implies

that each class  y/~xy/{y) is a union of cosets of H.   In fact,   y/~ly/(y) =

U¥(x)=¥(y)(H+x) • For if v(*) = v(y)then rVW = rVW • so #+x c

V~ VOO; if H € y~ VCv) then ^(m) = y/(y) and u e H + u.
Let H{,H2 eft? and define #i < #2 if #1 C 7/2. It is straightforward

to show that H\ n H2 £ ^. Further, for each h2 G H2 and each y e K,
Hi + [h2 + y) C y/-ly/{y). Since H2 g ^ it follows that y/(/?2 + y) = y/{y),

so we have H\ + H2 e %. Thus ^ is a lattice with a unique minimal element

{0} . Note also that K e % if and only if \yi{K)\ = 1, so, in general, A" g ^.
However, there is always a unique maximal element in ^. The existence of

maximal elements follows from Zorn's lemma. For, if W = {//,} is a chain in

^ then |J Hi■ £ %. Hence % has maximal elements. On the other hand, if

H', H" are maximal in 2f then, since H' + H" e&, H' = H" .

Fuchs [1] has described the ideals of M(Y, K, y/) for any set Y and has

given necessary and sufficient conditions for the near-ring M(Y, K, y/) to be

simple. Further, in [3], with X = K, with \X/E\ < 00, and with y/ equal
to the canonical map y/.K^ K/E, we determined the ideals of M :=

M(K/E, A", yi) as well as the radicals JV{M) and the quotient structures

M/JV(M), i/ = 0,.1,2.
We return to the general situation. Suppose |A| = 2. If y/(K) ^ X/E then

AnnM(^(A")) = (0: y/(K))M is an ideal of M with {0} g AnnM(^(A")) CM.

If y/(K) = X/E then we have that y/ is a bijection since we do not have

|A7£| = 1 . Therefore, from Theorem II.2, M £ Af(A) S A/(Z2), which is not

simple.

Theorem III.l. // |A| = 2 then M{X/E, K, y/) is not simple.

The next result follows from Theorem 6.1 of [1]. We also provide a short

sketch of the proof.

Theorem III.2 [1, 3]. // |A| > 3 and \X/E\ < oc then M(X/E,K, y/) is
simple •» y/ is surjective and %( = {{0}}.

Proof (Sketch). If ^(A) # X/E then ArmM(y/(K)) is an ideal of M with
{0} C AnnA/(v/(A)) CM. If {0} c H e W then I = {f £ M\f{X/E) c //}
is an ideal of M with {0} C / C M. For the converse, let A be an ideal of

M. If {0} c A c M and A <£ Mc then as in [3], one gets {0}///€(/,a
contradiction. If {0} C A C M and A 2 Mc then, again following [3], one

gets {0} ^ y/~{y/{Q) and y/~xy/{Q) G ̂ , also a contradiction.
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Now let B be an (M, Af)-subgroup of M. We note that for each a e K

the constant function ca '■ X/E -» K is in B, since for each b e B, ca =

ca * b G B. Hence Mc is contained in each (M, Af )-subgroup of M. We

say M is (M, M)-simple if the only (M, Af )-subgroups of M are M and

Mc. We turn to the problem of characterizing those M(X/E, K, y/) that are
(M, Af)-simple.

Suppose first that y/: K -» Ayii is not surjective. If |y(A")| # 1 then

|A7£| > 3 since we know \X/E\ f 1. Let 7 = {/ G M\f is constant on
y/{K)} and note that T < M with MCCT. Since ^(A") ̂  */£, T J> Mc,
and since |^(A")| > 1, we have that T ^ M. Let £Q, Ep e y/(K), / G 7\

and / G Af. Then (/ * t)(Ea) = (f * t)(Ep), hence f*teT. On the other
hand, t * f e Mc for each t e T, f g Af, so T is an (A/, Af )-group with
Afc C T C Af, i.e., Af is not (Af, Af)-simple.

If |^(A")| = 1 then, for each /, g e M, /* g e Mc. In fact, for Ea, Ep e

X/E, (f*g)(Ea) = fy/{gEa) = fy/(gEp) = {f*g){Ep). From this we find
that if T < Af with T D Mc then T is an (Af, Af)-subgroup of Af. Let A'
be a subgroup of A", {0} £ A"' c A" and let £r € AT/£. Define A(Ey; A"') =
{/ G Af|/(^) - 0 and f{Ea) € K', a ? y} . Then A{Ey; K') < M and so in
this situation A(Ey; K') + Mc is an (Af, Af )-subgroup of Af. Since \X/E\ > 1
it follows that A(Ey; K') £ {0}, hence A(Ey; A"') + MC^MC. Since K' # A",

say fco e A"\A"', the function g: X/E -» A" defined by #(£/,) = A^, )S ̂  y,
and ^(^) = 0 is in Af but not in A(Ey; K') + Mc. Hence Af is not (Af, Af)-
simple if such a K' exists, i.e., Af is not (Af, Af)-simple unless A is a cyclic
group of prime order.

Suppose \y/(K)\ = 1 and \X/E\ > 3. We let Ea e X/E and note that
Ann(X/E - {Ea}) is a subgroup of Af; thus Ann(X/E - {Ea}) + Mc is an

(Af, Af)-subgroup of Af properly containing Aff. Let {Ea, Ep , Ea} C X/E .

If h is any function such that h{Ep)^h{Ea) then h i Ann(A7£-{£Q})-r-Afc.
Hence Af is not (Af, Af)-simple.

Before continuing the discussion of (Af, Af)-simplicity we introduce some

notation. When \X/E\ = n < oo we can index the classes to obtain X/E =
{i?i, E2, ... , En} . Then each function b e M can be represented as an n-

tuple, b = (b\, ... , b„) where b{Et) = bt, i - 1, 2, ... , n . Thus Af =

X?=lK = Kx-- xK.
We now return to \y/(K)\ = 1 . We have seen that if \X/E\ < 2 then Af is

not (Af, Af)-simple. Suppose \X/E\ = 2, say X/E = {E\, E2}. If we consider
Ann(X/E - {E2}) = Ann(£'i) we find Ann^! = {0} x A. Thus for each
y G K, (0,-y) e Ann(£,) and (y,0) = (0,-y) + (y,y) G Ann(£,) + Af,.
Hence Ann^) + Mc - M. Therefore, if T is an (Af, Af )-subgroup of Af
and b = {b\,b2) is a nonconstant function in T, then (0, b2 - b\) G T,

b2 - b\ ^ 0. If A" is cyclic of prime order then {0} x K C T, so, as above,

M = T. Since we have already shown that \y/(K)\ = 1, \X/E\ = 2, and that
Af being (Af, Af)-simple implies A must be cyclic of prime order, we have

established the following result.

Theorem III.3. Let \X/E\ = 2 and \y/{K)\ = 1.  Then M is (Af, M)-simple
•» A is cyclic of prime order.

We have also established above that when y/ is not surjective and \X/E\ > 3

then Af is not (Af, Af )-simple.
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Next, we take {0} f H e % and define S(H) = {f e M\f(X/E) C H}.
Since H e %, it is straightforward to verify that S(H) is an ideal of Af,

consequently S(H) + Mc is an (Af, Af )-subgroup. In fact, for / G S(H),

ca£ Afc,and g£ Af, g*(f+ca)-g*ca £ S{H), so g*{f + ca) E S(H) + MC.
Since (S(H) + MC)M c S(H) + Afe, we have indeed that S(H) + Mc is an
(Af, Af)-subgroup of Af. If H ^ K, say ko G K - H, then the function
g: X/E —> K defined by g{Ea) = 0, g{Ep) - ko for a ^ /?, is in Af but not

in S(H) + MC, so Af is not (Af, Af)-simple. If H = K then A" + 0 C y/~ V(0)
implies |^(A")| = 1. When \X/E\ > 3 we know Af is not (Af, Af)-simple.
We have established part of the following characterization result.

Theorem III.4. If 3 < \X/E\ = n < oo then M = M(X/E,K, y/) is (Af, Af)-
simple & y/ is surjective and % = {{0}} .

Before showing that the conditions are sufficient we single out a lemma.

Lemma III.5. Let \X/E\ = n < oo  and let B be an (Af, M)-subgroup of
M. If y/: K -* X/E is surjective and for some i, i e {1,2,..., n}, At :—
Ann((jy¥, Ej) C B, then B = M.

Proof. Without loss of generality we take i = 1. Thus, A\ = K x {0} x ■ ■ ■ x

{0} C B. Since y/ is surjective, Vis, g X/E, 3fc, G A" such that y/{kj) - £,,
i = 1, 2, ... , n . Let h: X/E -> K be defined by h(E{) = k\ and h(Ej) = k2
for i± j. Then for x G A", (x, 0, ... , 0) G B and (x, 0,..., 0) * h = ef
where ef(Et) = x and ef(Ej) = 0 for / ^ 7 . But then for (x\, ... , xn) e M,

(Xi, ... , xn) = e\' + ■ ■ ■ + eln G B , i.e., M = B .

Proof of 'III.4. Let ^ be surjective and ^ = {{0}}, but assume there is an

(Af, Af)-subgroup B of Af with Afc g fi C Af. Let b = {b\, ... ,bn) be a
nonconstant function in B . Then 6' = b - (b\, ... , b\) — (0, b2 - b\, ... , bn -
b\) is in B. We show each bj - b\ G y/~l^(0). Since ^ is surjective, Ski € A"
with y/{ki) = Et, i = 1, 2, ... , n. Define g € M by g{E\) = kj and

g(Ei) = A:, for i±\. Then b" = b' * g e B with 6" = (6y - 61, 0, ... , 0).
Suppose 6, -b\ $. y/~ly/{Qi), say ^(6, - b{) = Et ^ y/{Qi). Then, for x G A",
ef*6" G B and ef *6" = (x, 0, ... , 0). This implies Ax = Ann(|J;¥1 £}) Q B,
so by the above lemma, B — M. But this contradicts B ^ M so we have

&, - b\ G y/-V(0) for 7 = 1, 2, ... , n.
For b £ B, b = {b\, ... , b„) we say 6, belongs to b. Define H = {bj -

bi\bj, bi belong to some b e B}. Note first if bj - bj £ H then -(bj - bj)
- bi - bj is also in H. Now let bj - bi, ct - cm be in H. From above,

(bj - bj, 0, ... , 0) and (q - cm, 0, ... , 0) are in B which means (bj - bj +
(ci-Cm), 0, ... , 0) is in B , so bj-bi + ci-cm G H. Hence H is closed under

addition, which means H < K. To show H < A", let 6, - bj £ H. Thus for
some 6eB, b = (b\, ... , bi, ... , bj, ... , b„), so ck + b = (k + b\, ... , k +
bj, ... , k + bj, ... , k + bn) £ B . Hence k + bj-(k + bi) £ H, which gives the
result.

Now let y G A" and bj - bt £ H. Then (bj■■ - b,■■, 0, ... , 0) G B as does

(bj - bi +y, y,..., y). Suppose bj -bt+y £ y/~[yy(y), say y/(bj - b, +y) =
Et ^ y/(y). Then, as above, we get A\ c B and, by III.5, B = M, again a
contradiction to B £ Af. Therefore we must have H + y c y/~ly/(y) for each
y G K. We have found that H £ W and, since B^MC, that // / {0} , which

is a contradiction to 2^ = {{0}} . This means that Af must be (Af, A/)-simple.
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It remains to complete the characterization for the situation in which \X/E\ =

2. Thus we. take \X/E\ = 2 and y/ surjective. In the above proof we showed
that % = {{0}} implies Af is (Af, Af)-simple. Furthermore, the discussion

prior to III.4 points out that if Af is not (Af, Af)-simple then there exists

{0} / H £ %. If H = K then \y/(K)\ — 1, which is impossible since y/ is
surjective and \X/E\ - 2.

Corollary III.6. Let \X/E\ = 2 and \y/(K)\ = 2. Then M is (Af, M)-simple
^ = {{0}}-

IV. Action of Af on A"

For any group G and any subnear-ring N of the near-ring M(G) of map-

pings on G, there is a natural action N x G —> G of N on G so that G is an

TV-group. One then investigates various properties of this action. In this section

we show that there exists a "natural" action of Af :— M(X/E, K, y/) on A"

and we initiate a study of the Af-group K. Specifically, we characterize when

A" is ^-primitive, v = 0, 1,2.

We first give our action of Af on A". Let f £ M, k £ K and define

Af x A" —► K by (/ ,k)\-> f(y/(k)), which we denote by f • k . For f, g £ M
and k£ K, (f+g).k = f-k + g-k while (f * g) > k = (f * g)(y(k)) =
(f¥g)(¥(k)) = f(v(g(v(k)))) = f-g(w(k)) = f • (g • k). Hence A" is an
Af-group.

Suppose f • K = {0} for some f £ M. If y/ is surjective then, since
f(y/(k)) = 0 for each k £ K, f is the zero map in Af. This shows that if y/
is surjective then the action of Af on A" is faithful. If y/ is not surjective, one

can find g £ M with g(y/(K)) = {0} and g(X/E - y/(K)) £ {0}. Therefore,
g • K = {0} and K is not a faithful Af-group.

Lemma IV.l. For M - M(X/E, K,yi), K is a faithful M-group ■&■ y/ is
surjective.

Lemma IV.2. For each k £ K, M -k = K.

Proof. For each a £ K the constant function ca is in Af and ca • k — a.
Hence KCM-k.

From this lemma we note that A" is a strongly monogenic V-group, conse-

quently, K is type 0 if and only if A" is a type 1 [5, p. 77].

Lemma IV.3. For each k £ K, M0-k = {0} if k £ y/~xy/(Q) and K otherwise.

Proof. We first note that g£M0&g*0 = 0<& gy/(0) = 0. Now Af0 • k —

{g(¥(k))\g £ Mo}. If k £ y/~ V(0) then y/(k) = ^(0), so g(y/(k)) = 0, i.e.,
Af0 • k = {0} . If y/(k) ^ y/(Q) then for any k' £ K there exists g £ M0 with
g(y/(k)) = k', hence M0-k = K.

If A" is a 2-primitive Af-group then A" is a faithful Af-group and of type

2 where "type 2" means that A" has no nontrivial Af0-subgroups. Thus if K

is not of type 2 then there exists a subgroup A of A", {0} ^ A ^ K with

Mo' AC. A. From the above lemma this means A c y/~xy/(Q). The converse is

also true. For if C is a subgroup of A" {0} ^ C ^ A, such that C C y/~ V(0),
then again from the above lemma, Mo • C c C, so K is not of type 2.
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Lemma IV.4. The group K is an M-group of type 2 ^ there are no nonzero

subgroups of K contained in y/~{y/(Q) .

We say y/~xy/(Q) is subgroup free if the conditions of the above lemma hold.

Combining Lemmas IV. 1 and IV.4 we obtain

Theorem IV.5. For M = M(X/E, K, y/), K is a 2-primitive M-group <$ y/

is surjective and y/~xy/(0) is subgroup free.

We turn next to 1-primitivity and O-primitivity. We recall that for any near-

ring TV, an TV-group G is O-primitive if G is a faithful TV-group and G is of

type 0, i.e., G is a simple V-group. From the remark following Lemma IV.2,

in our case, type 0 is equivalent to type 1 so we have that K is 1-primitive if

and only if A" is O-primitive.
Suppose A" is not a simple Af-group and let A be an ideal of m K, {0} ^

A ^ K. By definition, A < K. Moreover, for each f £ M, k £ K, and
a £ A, f'(a + k) — f'k£A. Assume for some k' £ K and a' £ A that
y/(a! + k') ? y/(k'). Then, for x G A", define fx:X/E - K by fx(y/{k')) = 0
and fxEa = x, Ea ? y/(k'). Then fx • (a' + k') - fx • k! = fx(y/(a! + k')) -
fx(y/(k')) = x, a contradiction to A ^ K. This means that y/(a + k) = y/(k),

for each k £ K, a £ A, hence A £ %.
Now let K be O-primitive. Since A" is a faithful Af-group, y/ is surjec-

tive. Assume ^ # {{0}}, say {0}/Be^. Since B g 2f, it follows that

B < K. Let / G Af, b £ B, k £ K and consider f ■ (b + k) - f ■ k =
f(y/(b + k)) - f(y/(k)). Again, since B £ %, it follows that y/(b + k) = y/(k),
so f • (b + k) - f • k = Q £ B . Thus 5 is a nonzero ideal of mK and, since K

is O-primitive, B = K. But, as we have seen, when y/ is surjective, A" ^ ^ .

We conclude that % = {{0}} . We have established the following result.

Theorem IV.6. Let M = M(X/E, A", y/). The following are equivalent:

(i)   mK is O-primitive;
(ii)   mK is l-primitive;

(iii)   y/ is surjective and % = {{0}}.

We combine Theorems III.2, III.4, and IV.6 to obtain our main characteri-

zation result.

Corollary IV.7. Let M = M(X/E,K, yi) with 3 < \X/E\ < oo. The following
are equivalent:

(i) mK is 0-primitive;

(ii) mA" is l-primitive;
(iii) Af is a simple near-ring;

(iv) Af is (Af, M)-simple;
(v) y/ is surjective and % = {{0}} .

In the proof of Theorem IV.6 we showed that if A is an ideal of mA then

A £ % or A = K and conversely, if B £ % U {A"} then B is an ideal of MK .

This gives a determination of the ideals of a/A .

Corollary IV.8. //" J'(mK) denotes the lattice of M-ideals of MK, then there
exists a lattice isomorphism between ,/(mK) and % U {A"}.



near-rings of invariants. ii 35

References

1. P. Fuchs, On the structure of ideals in sandwich near-rings, Resultate Math. 17 (1990),

256-271.

2. P. Fuchs and G. Pilz, A new density theorem for primitive near-rings (submitted).

3. C. J. Maxson and L. van Wyk, Near-rings of invariants, Resultate Math. 18 (1990), 286-297.

4. J. D. P. Meldrum, Near-rings and their links with groups, Research Notes in Math., vol.

134, Pitman, London, 1986.

5. G. Pilz, Near-rings, 2nd ed., North-Holland, Amsterdam, 1983.

6. H. Wielandt, Permutation groups through invariant relations and invariant functions, Lecture

Notes, Ohio State Univ., 1969.

Department of Mathematics, Texas A & M University, College Station, Texas 77843


