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DISTINCT 3-MANIFOLDS WITH ALL
SU(2), INVARIANTS THE SAME

W. B. R. LICKORISH

(Communicated by James E. West)

Abstract. Witten's SU(2), invariants do not classify 3-manifolds.

The aim of this note is to prove, in two ways, the following result.

Theorem. There exist pairs {Mx, M2} of closed oriented 3-manifolds such that

Mx and M2 have the same (Witten) SU(2)g invariants for all roots or unity

(for all levels), but such that there is no orientation preserving homeomorphism

between them.

Two methods of producing such pairs will be described; they are motivated by

two ways of obtaining links with the same Jones polynomial. The first method

consists essentially of gluing together the complements of two nonreversible

knots in two different ways. In the second, the complement of one knot is

glued to the complements of two other knots that are related by mutation. If

the Witten invariants corresponding to Lie groups other than SU(2) can be

described in a similar way to that explained below for SU(2), if they can be

interpreted, via parallels of link diagrams, in terms of the various 2-variable

generalisations of the Jones polynomial, then one might expect that at least

the first method would provide pairs of 3-manifolds with all Witten invariants

the same. Using the same underlying Jones polynomial phenomena, a different

collection of pairs of 3-manifolds not distinguished by the SU(2)g invariants
has been obtained independently and simultaneously by J. Kania-Bartoszynska.

Throughout, manifolds, submanifolds, and homeomorphisms are to be taken

as smooth or piecewise linear.
The SU(2)? invariants of Witten are described in [ 14, 15] using the following

terminology. Denote by 21 the appropriate linear skein [11, 12] of the standard

annulus {z £ C: 1 < \z\ < 2}. Thus 21 is the quotient of the Z[A, A~x]-
module freely generated by ambient isotopy classes of all link diagrams in the

annulus, quotiented by the relations

(i)   X U (a closed nul-homotopic component with no crossing)
= (-A~2 - A2)X ,

(ii) X=A)( + A-lx.
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Here X is any link diagram in the annulus and (ii) refers to any three such

diagrams identical except where shown. It follows that diagrams regularly iso-

topic in the annulus represent the same element of 21. If a' is the element

represented by i parallel simple closed curves all encircling the annulus, then

{a°, ax, a2, ...} is a base for 21 (a0 being represented by the empty diagram).

Suppose that D is a planar diagram of an «-component link. Neighbourhoods

of these components may be taken to be n annuli immersed in the plane with

over- and under-crossing information preserved from the crossings of D. Con-

sider the operation of taking n link diagrams in n standard annuli, inserting

them in the immersed annuli, obeying the over and under crossing instructions

in the obvious way, and then evaluating the Kauffman bracket. This operation
induces a well defined n -multilinear map

*fl:!lxax- x%^Z[A,A~x].

Note that if A is an w-component diagram in the annulus similar insertion

induces a multilinear map

4V 2lx2lx •■■ x2t->2t.

The operation, of reflecting the annulus (z ^z) together with changing every

over-crossing to an under-crossing, gives a permutation p on the diagrams in

the annulus that clearly passes to the quotient to induce a linear isomorphism

p* of 21. However, as p*(a') = a1, p* is the identity map. Of course, if the

diagrams are regarded as actual links in a solid torus that is a slight thickening

of the annulus, then p corresponds to the effect of a re-rotation of the solid

torus about an axis meeting the solid torus in two arcs. If A is an «-component

diagram in the annulus then

*YpA = P**Ya = *Pa.-

Now, suppose the oriented 3-manifold M is obtained by surgery on the n-

component framed link L (in S3) that is represented by a planar diagram

D in which the writhe of each component is the framing of the corresonding

component of L. Let A be a primitive 4rth root of unity so that elements of

Z[A,A~X] become evaluated as complex numbers. Corresponding to A there

is a (very special) element a £ 21 so that the complex number

(4>l/(_1)(a))C+,'-")/2<I>Z)(a,a,...,a)

is the A-SU(2)q invariant of M. Here a and v are the signature and nullity

of the linking matrix of L (with the framings on the diagonal) and U(—Y) is

the diagram of the unknot with one negative crossing. Details are to be found

in [15] where it is shown that this is essentially the same invariant as that of

Reshetikhin and Turaev [17, 10]. The algebra of [14, 15] was extended in [1]
to allow A to be a 2rth root of unity; the invariant has exactly the same form

but a different a is used.
Let Sx be the unit complex numbers and let (-1) be the automorphism

of the torus Sx x Sx defined by (-l)(zx, z2) = (zx, ~z2) • This represents

the nontrivial central element of the mapping-class group of Sx x Sx . In what

follows cp will be a homeomorphism from one torus to another; —cp will denote

the composition (-1) o tp = tp o (-1).
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Lemma 1. Suppose Xx and X2 are compact connected oriented 3-manifolds

each having boundary a torus. Let <p: dXx -> dX2 be an orientation reversing

homeomorphism. Then for all primitive 2rth roots of unity A, Xx U^ X2 and

Xx u_^, X2 have the same SU(2)9 invariants.

Proof. The manifold Xx l)¥ (Sx x D2), for any homeomorphism y/: dXx —►

d(Sx x D2), is obtained by surgery on a framed link in S3. The solid torus

in S3 corresponding to Sx x D2 may be taken to be disjoint from that link

and, by further surgery using the technique described in [6], it can be taken to

be unknotted. Thus Xx is obtained by surgery on a solid torus, and, after yet

more surgery, dXx can be identified in any prescribed way with the boundary

of that solid torus. Combined with a similar consideration for X2 , this shows

that XXU(/)X2 can be obtained from S3 by surgery on a framed link L with the

following properties. L is the disjoint union of sublinks Lx and L2 contained

in the interior of solid tori Tx and T2, respectively, where Tx and T2 form

a Heegaard splitting of S3 (and are hence unknotted solid tori, linked as a

standard Hopf link). Further, each Xj is obtained by surgery of 7", on the

framed link L,. Let H be the standard diagram, of the Hopf link of two
components, that has two crossings. Then there are diagrams A( and A2 in the

annulus so that if A) is inserted around one component of H and A2 around

the other then the result is a diagram D for the framed link L (each inserted

A, corresponding to Li). Insertion of A! and pA2 gives a diagram D' of a

framed link L', surgery on L' giving Xx \J^ X2. Then

<Pz)(a,a, ... ,a) = 0//(lI/Al(a,a, ... , a), ^(a, a, ... , a))

= <S>H(xYAl(a, a, ... ,a),TM2(a,a, ... , a))

= <J>D/(a,a, ... , a).

If now L is oriented, it has a linking matrix. If an orientation of L' is chosen

to equal that of L restricted to Lx and to be the reverse of that of L on (its

copy of) L2, then L and L' have equal linking matrices. Thus the manifolds

Xx U^ X2 and Xx U_^ X2 have the same A- SU(2)? invariants.

The preceding lemma produces pairs of manifolds with the same invariants; it

is now necessary to show that sometimes these manifolds are distinct. Doubtless

in particular cases that could be proved by analysing the fundamental group, but

use of some standard results about 3-manifolds leads to classes of such distinct

pairs. Recall that a 3-manifold M is irreducible if every 2-sphere embedded

in M bounds a 3-ball contained in M and that M is said to be atoroidal if

every incompressible torus in M is parallel to a component of dM (if M is

orientable 'incompressible' means that the inclusion map of the torus induces

an injection on fundamental groups). The following lemma gives sufficient

conditions under which Xx u^ X2 and Xx 11-^ X2 are distinct.

Lemma 2. Suppose that 3-manifolds Xx and X2 are compact, connected, ori-

ented, and irreducible, and each has an incompressible torus as its boundary.

Suppose, in addition, that one of Xx and X2 fails to be Seifert fibred, that both

are atoroidal, and that for i = 1, 2 if h: Xi —> Xj is any orientation preserv-

ing homeomorphism then h\dXj-. dXt —> dXj is isotopic to the identity. Let

<t>: dXx —> dX2 be an orientation reversing homeomorphism. If(i) Xx and X2
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are not homeomorphic, or (ii) Xx = X2 but (p2 is not isotopic to (-1), then

Xx u^ X2 and Xx u_^ X2 are not homeomorphic as oriented 3-manifolds.

Proof. Let M and M~ be XXU$X2 and XxU-(pX2, respectively. M and M~

contain incompressible tori T and T~ , namely, the copies of dXx . Neither
M nor M~ is Seifert fibred; otherwise the incompressible torus could be taken

to be a union of fibres and the fibration would then restrict to a fibration on

both Xx and X2. Because Xx and X2 are atoroidal, the Characteristic Variety

Theorem for irreducible 3-manifolds [8, 9] asserts that the incompressible tori

T and T~ are unique up to ambient isotopy (only an easy part of that theorem

is needed). Thus, if h: M —> M~ is an orientation preserving homeomorphism

it may be assumed, after isotopy, that h(T) — T~ . In case (i) h must map the

'first half of M to the 'first half of M~ . Thus h decomposes as hx: Xx -» Xx
and h2: X2 —> X2 with the compatibility condition that for all x in dXx ,

—<phx(x) - h2<t>(x). But hx\dXx and h2\dX2 are isotopic to the identity, so

this implies the false assertion that (-1) is isotopic to the identity map of the

torus. In case (ii) there is the additional possibility that perhaps hx(Xx) = X2

and vice versa. Then -q}h2q>(x) = hx(x) for all x in dXx . If then Xx and X2

are regarded as equal, hx\dXx and h2\dX2 are again isotopic to the identity

and hence -cj)2 is also isotopic to the identity.

Reassurance is now needed that it is easy to find manifolds satisfying all the

conditions of the last lemma. Suppose k is a knot (just a simple closed curve)

in S3. The exterior X(k) of k is the complement of the interior of a regular

neighbourhood N(k) of k. Then it follows from the Loop and Sphere The-
orems (see [7], for example) that the compact connected oriented 3-manifold

X(k) is irreducible and, if k is nontrivial then dX(k) is incompressible. The

knot k is reversible in the sense of Conway [4] (or invertible in the sense of Trot-

ter [18]) if there exists an orientation preserving homeomorphism F: S3 —> S3
such that F(k) = k but F reverses the orientation of k. The existence of

nonreversible knots was established by Trotter in [ 18] where he showed that the

pretzel knot (see Figure 1) K(p, q, r) is not reversible provided \p\, \q\, and

|r| are distinct odd integers greater than 1. His technique used a representation

of nx(X(k)) onto a triangle group of planar hyperbolic isometries. Other non-

reversible Montesinos knots are described in [3]. The first nonreversible knot

in the tables is 8n (it is not a pretzel knot, see [2]).

A pretzel knot k - K(p, q, r) with \p\, \q\, and \r\ odd integers greater

than 1 , is simple in the Schubert sense; that is equivalent to saying that X(k)

is atoroidal. This follows from a consideration of the fact that the double cover

of S3 branched over k is an atoroidal Seifert fibre space.

«T(-3,5,7) XXX>S\ I

Figure 1
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Lemma 3. Suppose that k is a simple knot that is not reversible. Then X(k)

satisfies all the conditions for Xx and X2 in Lemma 2.

Proof. As k is not reversible, X(k) cannot be Seifert fibred, for the only knots

with Seifert fibred exteriors are the (reversible) torus knots. Let X and p be

a longitude and meridian for k. These are simple closed oriented curves in
dX(k) that represent generators of the kernels of the inclusion-induced maps

Hx(dX(k)) -> Hx(X(k)) and Hx(dX(k)) -» Hx(N(k)); they represent a base
for Hx(dX(k)) and are unique up to isotopy and orientation. Let h: X(k) ->

X(k) be an orientation preserving homeomorphism. It follows at once that

h(X) is isotopic to ±X. However, the theorem of Gordon and Luecke [5], to

the effect that knots are determined by their complements, implies that h(p) is

isotopic to ±p . Thus, as h preserves orientation, it may be assumed after an

isotopy that either h(X) = X and h(p) = p (in which case h\dX(k) is isotopic

to the identity), or h(X) = -X and h(p) - -p. In the latter circumstance, h

extends over N(k) to produce an orientation preserving homeomorphism of

S3 that reverses the direction of k .

Note that for particular examples of knots it would often be possible to avoid

the general but deep theorem from [5]. Lemmas 1, 2, and 3 now at once give

a proof of the theorem: The required 3-manifolds can be formed by taking

two distinct K(p, q, r) pretzel knots, each with \p\, \q\, and \r\ distinct odd

integers greater than 1, and identifying their boundaries together by means of

homeomorphisms <j> and -</>.

The method described above exploits one way of obtaining links with the

same Jones polynomials (namely, rotating a solid torus containing some com-

ponents of the link); another well-known method uses Conway's idea of muta-

tion. This has often been explained in recent times (see [13] for example). The

standard example of two distinct knots related to one another by mutation is

shown in Figure 2. The idea is that a ball, meeting one knot in two arcs, can be

removed, given a rotation through angle n that permutes the four end points of

the arcs, and then replaced to constitute the other knot. There are three possible

axes for the rotation. For knot diagrams the idea becomes that of removing a

disc meeting the diagram in two arcs, rotating the disc through n , or reflecting

(DCS
Figure 2
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Figure 3

it and changing all the crossings, and then replacing it. The following result was

first proved by Morton and Traczyk [16], but as a quick proof is now available

in the spirit of [15] that is sketched here.

Lemma 4. Suppose that Dx and D2 are knot diagrams that are related by mu-

tation. Then Od, = <bDl as maps 21 -» Z[A, A~x].

Proof. It is sufficient to check that <J>o, and <&Dl agree on the base {Sn(a)}

described in [15], where S„ is the «th Chebyshev polynomial (of the second

kind). Now S„(a) is the element of 21 obtained by inserting into the annulus

the idempotent /(n) of the «th Temperley-Lieb algebra and closing it off with

n parallel arcs encircling the annulus. This /*(") has the property that e,/'"' =

0 = f^ei for 1 < i < n — \ where I, ex, e2, ... , e„-X are the usual generators

of the Temperley-Lieb algebra (see [14, 15]). As fWfW = /("', the same
element of 2t results from using several (four, for example) copies of /(n)

joined up in a chain around the annulus. Consider a disc D with four points

on its boundary that are to be permuted by a mutation operation, and place

n points on the boundary near each of these four. Consider the free module

over %[A, A~x] generated by all link diagrams in the disc with these An end

points, quotiented out by the relations (i) and (ii) previously described. The

mutation operation induces a linear map on this module. The module has a

base of all diagrams with no crossing and no closed curve. These diagrams

are permuted nontrivially by the mutation. However, suppose that a copy of

/(n) is placed in the plane just outside the disc D abutting it at each of the

four n-tuples of points as shown in Figure 3. Then, because e,/(,,) = 0, any

base diagram containing an arc with both end points in the same n -tuple makes

zero contribution to the Kauffman bracket polynomial of any link obtained by

joining up the 4« points in the plane outside the whole ensemble of Figure 3.

The remaining base diagrams are clearly invariant under mutation.

The same proof shows that if Dx and D2 are link diagrams that are related

by a sequence of mutations, then

<^Dl(Sn(a), S„(a), ... , Sn(a)) = <3>D2(S„(a), Sn(a), ... , S„(a)),

this being a slight extension to the above result.
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Lemma 5. Let kx and k2 be oriented simple knots in S3 related to each other

by mutation (those of Figure 2, for example), and let k also be a simple ori-

ented knot (for example that of Figure 1). Suppose that k,kx, and k2 are
all distinct even when orientations are neglected. Let Xx, X2, and X be their

respective exteriors, and let Mx and M2 be the manifolds Xx\J(f>X and X2VJ^X

where <f>: Sx x Sx -» Sx x Sx is any orientation reversing homeomorphism, the

boundaries of Xx, X2, and X being identified with Sx x Sx by taking longitude

and meridian to be standard generators of the torus. Then Mx and M2 are not
homeomorphic but they have all the same SU(2)9 invariants.

Proof. Torus knots have no nontrivial mutation (their double branched covers

are atoroidal) so Xx and X2 are not Seifert fibred. As in the proof of Lemma

2, any homeomorphism from Mx to M2 would, after isotopy, have to send

the incompressible torus in one to that of the other. That cannot happen as

Xx, X2, and X are the exteriors of distinct knots [5]. (Often the way to prove
knots are distinct is to show their exteriors are different; the power of [5] is then
not needed.)

Now, kx and k2 have diagrams Dx and D2 that are related by muta-

tion. As in the proof of Lemma 1, X can be obtained by surgery on a solid

torus, using a framed link represented by a diagram A in an annulus, in such

a way that insertion of A around Dx gives a surgery diagram Ex for Mx,

insertion around D2 gives a diagram E2 for M2. Then 0£l(a, a, ... , a) =

^(^(a, a, ... , a)), but by Lemma 4 this is ^(^(a, a, ... , a)), which

in turn equals <J>£2 (a, a, ... , a). However Ex and E2 have the same linking

matrix and hence the manifolds they represent (by means of surgery) have the

same SU(2)? invariants.

This lemma provides a second proof of the theorem.
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