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REAL ANALYTIC RADON TRANSFORMS
ON RANK ONE SYMMETRIC SPACES

ERIC TODD QUINTO

(Communicated by J. Marshall Ash)

Abstract. Using microlocal techniques, we prove support theorems for Radon

transforms with real analytic measures on horocycles in rank one symmetric

spaces. We generalize Helgason's support theorem to this case and prove a new

local support theorem.

1. Introduction

Radon transforms on symmetric spaces have a rich theory because of the

extra structure that the groups provide. In this article, we will use this structure

plus the theory of analytic Fourier integral operators to prove support theorems

for real analytic Radon transforms on horocycles in symmetric spaces. This

study is based on the pioneering work of Helgason (e.g., [He3, He4]) on group

Radon transforms and Guillemin [Gl, GS, G2] on Radon transforms as Fourier

integral operators. Since then several authors have studied Radon transforms
as Fourier integral operators [GU, BQ2]. The microlocal analysis is easiest for
rank one, the case considered here.

Let X be a real analytic manifold and let the manifold Y parameterize

certain subsets of X. Let p be a weight function on each of these subsets.

Let Rft be a Radon transform that integrates functions on X over the sets

parameterized by Y in the weight p. A typical support theorem for R^ is
as follows: given appropriate functions / on X and an appropriate subset

sf of Y, if Rf(£) = 0 for each submanifold <^ in s/ , then / is zero on
all points in the union of the submanifolds in s/ . Cormack [Co], Solmon

[So], and others have proven support theorems for transforms integrating over

various curves and surfaces and with nonstandard measures (e.g., [Fi, O, Q2]).

However, there are examples depending on the function class (e.g., [ShK]) or

measure [Bo] for which support theorems do not hold. Support theorems are

useful in partial differential equations [He4] and tomography [Q3].

The support theorems in this article are for the Radon transform on horo-

cycles on rank one symmetric space with arbitrary nowhere zero real analytic
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measures. Under the assumption that the measures are group invariant, Helga-

son [He4] proved Theorem 4.1 for symmetric spaces of all ranks using purely

Lie algebraic techniques. Theorem 4.3 is new, even in the classical case. In

our proofs, the theory of real analytic Fourier integral operators is used to de-

duce analytic smoothness of a distribution / from support restrictions on R^f
(Theorem 3.1, see also [Gl]). Then a theorem of Hormander Kawai and of

Kashiwara [Ho, Ka] about analytic singularities and support is used to deduce

support restrictions on / from analytic smoothness of /. The Radon trans-

form, R^ , and its dual, P*, are defined using the group double fibration in §2;

the microlocal analysis is given in §3; and the support theorems are proven in

§4.

2. The point-horocycle double fibration

Let G be a real semisimple noncompact Lie group. Let G = KAN be its

Iwasawa decomposition and let M be the centralizer of A in K. The point-

horocycle double fibration is

Z = G/M   ^U   Y = G/MN

(2.1) \px

X = G/K

where px and py are the natural maps [He5].

The double fibration provides manifolds of integration for a Radon trans-

form. For each £ G Y, there corresponds a unique closed horocycle in X,

£ = pxPy '({<!;})     with measure dm^(x)

and for each x e X, there corresponds a unique compact subset of Y,

x = PyPx'({x})     with measure dmx(c;).

These measures are defined canonically in terms of the appropriate Haar mea-

sures on the groups. Because the maps in (2.1) are fibrations, all t\ are dif-

feomorphic (to MN/M ~ N), and all x are diffeomorphic (to K/M) [He2,
He5]. The set Z is called the incidence relation because Z can be embedded

in X x Y as Z = {(x, £) G X x Y\x £ £,} , and under this identification, the

maps px and py are projections.

These manifolds and measures define a Radon transform and its dual in

the following way. Let p(x, £) be a nowhere zero real analytic function for

(x, €) £ Z . Let / G CC(X), then the Radon transform of / is defined by

(2.2a) *„/(£)=/    f(x)p(x,c;)dmi(x).

This is the integral of / over the horocycle £, c X with respect to the analytic

measure pdm^ . The dual Radon transform of g £ C(Y) is

(2.2b) R;g(x) = [    g(£)p(x, Z) dmx(Z),

the integral of g over the compact set x c Y of all horocycles through x with

respect to the analytic measure pdmx . As in the classical case [He2] PM and
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P* are formally dual under the G invariant measures on X and Y . The

Radon transform and its dual can be understood as push forwards of pull backs

of measures on X,  Y , and Z [GS, p. 365].
We include the weight p in the definition of the Radon transform (2.2)

because canonical measures do not occur in general. Employing non-standard

measures can help focus on properties intrinsic to the Radon transform rather

than on specific symmetry relations that are valid only for special cases. Also,

our proofs, involving microlocal analysis, do not require canonical measures.

3. The Radon transform as an analytic Fourier integral operator

The key to the support theorems is the way that Rf, detects singularities,

Theorem 3.1. Recall that X is a real analytic manifold and so the analytic

wave front set, WFA(f), of a distribution / g %'(X) is defined using local

coordinates and the definition in R" [Tr].

Theorem 3.1. Let G be a semisimple Lie group of real rank one. Let R^ be a

Radon transform on horocycles with a weight function p that is real analytic and

never zero. Let f £ W(X) and let £,0 be a given horocycle. Assume R^f = 0

for all horocycles in an open neighborhood of <^0 • Let N*£0 be the conormal

bundle of £0 in T*X. Then WFA(f) n N*£0 = 0.

The essential calculations in this proof were done by Victor Guillemin [G1 ] in

unpublished work. Guillemin proves general conditions on an arbitrary group fi-

bration for R^R/i to be an elliptic pseudodifferential operator. For rank greater

than one, R^R^ is not elliptic and Theorem 3.1 is not true. We prove a weaker

statement for rank greater than one in [GQ] (see end of §3).

Proof of Theorem 3.1. Because Guillemin's proof [Gl] was never published, the

relevant details are given here. The key to Theorem 3.1 is an understanding of

the microlocal analysis of the operators P^ and P* . This is gotten from the

diagram on the cotangent level corresponding to the double fibration (2.1):

Y = N*Z\0    -^    T*(Y)\0

(3.1) [*x

T*(X)\0

where %x and ny are the natural projections.

Without loss of generality, we can assume £0 is the identity coset in Y.

The set Py{(D = MN/M ~ N is the orbit of MN in Z = G/M (see [He2,

Theorem 3.4]). Let Y0 be the subset of Y lying above Py~l(£0) • We first show

Lemma 3.2.  Ttx '■ Y0 —> N*£o \ 0 is a dijfeomorphism.

Proof. The argument is valid for any double fibration. First, note for

(x,£0) £ Z that the sequence

-    i i   Tlx * s(X x Y)
(3.2) 0 —» TAo -*-» TXX -U   (^°H    _    ; — 0

yU,{„)z

is exact where / is the inclusion and for v £ TXX , j(v) is the equivalence class

of (v , 0) in the quotient space in (3.2). Clearly   im i = ker j as v £ Txc\0 iff
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(v, 0) £ T(X£o)Z . The map j is onto because pY : Z —> Y is a submersion: to

(u, iu) G r(x,{„)(X x Y), then there is a v £ TXX such that (v , w) £ T(x<io)Z ;

thus (v , w) is in the same equivalence class as (v - v , 0), and so j is onto.

Taking the dual diagram of (3.2) shows that %x , the dual map to j in (3.2),

is a diffeomorphism on each fiber of Y0. Now, because Z is embedded in

X x Y, px: Py~x(£,o) -> io is a diffeomorphism on the base, so the lemma is

proved.   0

Theorem 3.1 follows from the properties of the map nY in (3.1). Lemma

3.4 will imply that nY is an injective immersion if G has real rank one. This

is the Bolker Assumption [GS; see also Ql, p. 335], and it implies that T is a

local canonical graph. Because of the assumptions on the measure p, it also

implies that R^ is an elliptic Fourier integral operator associated with Y [GS,
see also Ql, p. 337 above (15)]. Although this result was proven in the C°°

category, it is true in the real analytic category [Bj, SKK, Ka]. The calculus of

such operators allows one to prove that, if R^f = 0 for horocycles near £0,

then WFAf n [nx ° ffy177 Y \ 0] = 0. However, by the definition of Y0 and

Lemma 3.2, nx ° UyXT^Y \ 0 — N*£0 \ 0. This proves Theorem 3.1 assuming

the Bolker Assumption.
The composition rules of Fourier integral operators also imply that R*^R^ is

an analytic elliptic pseudodifferential operator [GS, see also Ql, Theorem 2.1].
A translation argument on Y above the fibers of Z —> Y shows that the

Bolker Assumption is equivalent to nY : Y0 —> 77 Y being an injective immer-
Qo

sion. Let

(3.3) -p = 7iYo7i^x:N*l\0^TlY\0.

By Lemma 3.2, the map nY : Y0 -> 77 Y is an injective immersion ///the

map ~p is. To finish the proof, we will prove that ~p is an injective immersion

(Lemma 3.4).
To this end, we will first express p in terms of the Lie algebras (Lemma

3.3). Let q, t, o, m,and n be the Lie algebras of C7, K, A, Af,and N,
respectively. Let q = 10 p be the Cartan decomposition of g, and let B denote

the Killing form. Recall that B\t is negative definite; B\p is positive definite;

and that 9 = 6©p is an orthogonal decomposition with respect to B [Hel,

Proposition III 7.4]. Identify 0* with g using B. If h c g, then let

^ = {S£g\B(S,i)) = 0}.

Under the identification of g with g*, hx is the "conormal space" of h,. Thus

(3.4) t1- = p   and   (m + n)x = a + n.

The second equality in (3.4) is true for the following reasons. As tip, m±a.

Recall that n is the direct sum of the positive root spaces [Wa, 7.3.5]; (m + 0)
is the "zero root space" [Wa, 7.3.4]; and two root spaces are orthogonal under

the Killing form if the sum of their roots is not zero (see [Hel, III 4.2]). These

facts imply (m + n)_L(o + n), and now a dimension argument using [Wa, 7.3.5]

completes the proof.

Lemma 3.3. Let G — KAN be the Iwasawa decomposition of a semisimple Lie

group of any real rank and let M be the centralizer of A in K.  Let £0 be
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the horocycle MN. Then the conormal space 7Y*|0 \ 0 = {(gK, Ad(g)S) | g £

MN, S £ a\ 0} and the cotangent space 7? Y = o + n. The map p = nYon^x

is projection on the second factor

(35) 7J:ATcfo\0^r;oY\0

(gK,Ad(g)S)^Ad(g)S.

Proof.   T^Y is identified with g/(m + n) and so T^Y can be identified with

(m + n)x = a + n by (3.4).

Let g £ MN. Then the isotropy group of gK in X is gKg~x. Using this,

we see TgKX — g/(Ad(g)t). The manifold £0 is canonically diffeomorphic to

MN/M ~ N and so

s        m + n    _ Ad(g)(m + n) + Ad(g)E
lgKQo     Ad(g)m Ad(g)t

Note in the last equality that Ad(g)(m + n) = m + n because g £ MN. Using

(3.4) one sees that the conormal space

(3.6) N;K£0 = Ad(g) [(m + n)-1 n 6X] = Ad(g) [(a + n) n p].

This simplification is valid because of the identification of g with g* using the

Killing form and that B(Ad(g~x)S, T) = B(S, Ad(g)T) for all S £ g, T £ g,
and g £ G.

Let n be the sum of the negative root spaces. Now, because o c p and

n n n = {0} , and because the Cartan involution maps p onto itself and n onto

n [Wa, 7.3.5], (o + n) np = a so (3.6) becomes N*K£0 = Ad(g)a. This proves

that A/*cj0 is as given in Lemma 3.3. Using this expression for N*£0 , Lemma

3.2, and that the maps are all natural, one sees that ~p is just inclusion in the

second factor.   □

The final step in the proof of Theorem 3.1 is the confirmation that the Bolker

Assumption holds.

Lemma 3.4. If G has real rank one, then the map p in (3.3) is an injective

immersion.

Proof. Using Lemma 3.3, we first prove p is injective. Let g £ MN be such

that Ad(g)5 G a for some 5* G a \ 0. As a is one-dimensional, g normalizes

o. Let g = mn for some m £ M, n £ N. Because m centralizes a and

g normalizes a, n normalizes a. We now prove n = e. Assume n ^ e.

Because dim o = 1, all restricted roots are 1-1 maps from a to I. Therefore

the following map is 1-1 from N to n [Hel, Lemma 4.6, p. 231]; <t>(n\) =

Ad(nx)S-S. As 4>(e) = 0, </>(n) = Ad(n)S - S £ n \ 0. Because nna={0},
Ad(n)S = S + cj)(n) £ a. Therefore, n = e, g = m £ M, and therefore ~p is

injective.

To show p is an immersion at (eM, S0) £ N*Zo\0, we construct an arbitrary

path through (eM, S0) and take its derivative. Let g(t) be a path in MN with

g(0) = e and ^(0) = V0 £ m+n, and let 5(0 be a path in o\0 with S(0) = S0

and «jf (0) = TQ £ a. Then v(t) = (g(t)K, Ad(g(t))S(t)) is a path in /V*&, \0

with derivative ^(0) = (V0, ad(V0)S0 + T0). Assume dpv(t) = ad(V0)So + T0
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is zero. Therefore, ad(V0)S0 - -T0 £ a and, since o is one-dimensional and

S0 ¥" 0, V0 normalizes a. Because G has a finite Weyl group [Wa, 7.5.6], the

normalizer of a in t is m. Because n is the sum of the positive root spaces

[Hel], [a, n] c n. This shows that the normalizer of o in g is m + a and so

the normalizer of a in m + n is m. This shows V0 £ m and so ^(0) = 0 and

so ~p is an immersion.   D

When the real rank of G is greater than one, the Bolker Assumption does

not hold. [GQ] has a more restrictive theorem in this case under the other

hypotheses of Theorem 3.1:

(3.7) WFA(f)nN° = 0

where N° = {(gK, Ad(g)5) \g £ MN, S £ a\ is regular} . S £ a\0 is regular
[Hel] if a(S) ^ 0 for all restricted roots a.'

4. The support theorems

Theorem 4.1 is the generalization of Helgason's support theorem to nonin-

variant measures.

Theorem 4.1. Let G be a semisimple Lie group of real rank one. Let RM be

a Radon transform on horocycles with a weight function p that is real analytic

and never zero (2.1)-(2.2). Let f £ ^'(X) and let si c Y be an open con-

nected subset. Assume P^/(0 = 0 for all horocycles t\ £ si and assume some

horocycle in si is disjoint from supp/. Then \j{£, \ £, £ si} is disjoint from

supp/.

Theorem 4.1 implies a limited angle theorem; namely, let V be an open

neighborhood of ko £ K. If P/i/(<^) = 0 for all horocycles kaMN with a £ A
and k G V, then / = 0. The proof uses the decomposition of Y = K/M x

A [He2, Proposition 3.6] and that si = {kaMN\k £ V, a £ A} is open
unbounded and connected in Y.

Proof. The arguments are as in [BQ1] for the hyperplane transform. The first

key idea is Theorem 3.1. Let £i be a horocycle in si that is disjoint from

supp / and let t\2 be an arbitrary horocycle in si . Assume supp / meets t\2.

Let £P be a path in si between £1 and £2 and let <^0 be the first horocycle in

the path that meets supp /. As R^f = 0 for horocycles near £0 , the conclusion

of Theorem 3.1 implies WFAf'n N*£0 - 0 • Furthermore, / is zero on one

side of t\0.

The second key idea is a theorem of Kawai, Kashiwara, and Hormander [Ho,

Theorem 8.5.6]:

Lemma 4.2. Let h £ %>'(X) and assume h is zero on one side of the horocycle

£0. Let x0 G<f0nsupp/ and let (x0, co0) £ N*£o\0. Then (x0, co0) £ WFAf.

Hormander's result is stated for Rn, but it can be proved in X using real

analytic local coordinates and the fact that in rank one spaces, horocycles are

complete codimension one surfaces.

1 If a has dimension one, then all restricted roots are one-to-one maps and so all S€o\0 are

regular.
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Applying Lemma 4.2 to Xo G cfo n supp/ gives a contradiction that proves

the theorem.   D

A local support theorem similar Globevnik's theorem [Gl] for the X-ray trans-

form in Rn also follows from Theorem 3.1 and Lemma 4.2.

Theorem 4.3. Let G be a semisimple Lie group of real rank one. Let PA be

a Radon transform on horocycles with a weight function p that is real analytic

and never zero (2.1)—(2.2). Let B(r) be the open geodesic ball of radius r in

X. Let f £ W(X) and let Ax = 5(1) n supp/. Assume Ax is compact, and

assume Rpf(£) = 0 for all horocycles cf that meet B(l) but not 5(1/2). Then

supp/n[5(l)\C15(l/2)] = 0.

The hypotheses of Theorem 4.3 allow supp / to include points outside 5(1).

The choice of 5(1) and 5(1/2) are somewhat arbitrary and local support

theorems can be proved for other sets determined by the horocycles disjoint

from them.

Proof. Let r be the smallest number such that Ax c CI B(r), and assume the

conclusion of Theorem 4.3 is false. As Ax is a compact subset of 5(1), re

(1/2, 1). Under these hypotheses, Theorem 3.1 implies WFAfnN*dB(r) = 0
because through each x e dB(r) there is a horocycle lying outside 5(1/2) in

each normal direction to dB(r) [He2]. Applying Lemma 4.2 to / = fxA]

gives the contradiction that proves the theorem.

If the real rank of G is greater than one, then (3.7) shows that some wave-

front directions conormal to £„ are not detected by P^ . This is analogous to

the X-ray transform on line complexes in R3 [BQ2] and on symmetric spaces

[GU] where some wavefront directions conormal to lines in Y are not detected

by Rn . More subtle geometric arguments are needed to prove support theorems
in these cases [BQ2, GQ].
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