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CONSTRUCTIBILITY OF THE SET OF POINTS
WHERE A COMPLEX ANALYTIC MORPHISM IS OPEN

ADAM PARUSINSKI

(Communicated by Clifford J. Earle)

Abstract. Using the local flattening theorem we prove that the set of points

where a complex analytic morphism is open (or universally open) is construct-

ible. A similar result is obtained for a morphism of complex algebraic varieties.

Let f:X -> Y be a morphism of schemes and let L(f) c X be the set
of points where / is universally open (see Definition 1.2). In [EGA, (14.3.9)]

Grothendieck asked whether L(f) is always a constructible subset of X. If

X and Y are of finite type over a field k and / is a morphism over k, then

the answer is positive and was given by Roland Huber [Hu], who also posed

the question whether the same is true in the complex analytic category. We

shall show in §1 of this paper that this is the case (Theorem 1.4). The idea of

our proof is different from that of Huber. His proof is based on the properties

of real closure of a field and real spectrum (or valuation spectrum in the case

of a field of positive characteristic) and ours uses flatness, namely, the local

flattening theorem [HLT, Theoreme 4; HI, Theorem 4.4].
In §2 we show how to extend our proof to the category of complex algebraic

varieties. At the end we give two interesting examples of L(f).

In view of Hubert's proof it is interesting to ask a similar question in the real

analytic category.

Question. Let f:X -+ Y be a morphism of real analytic spaces. Is L(f) always
a semi-analytic subset of X ?

As Huber pointed out to me, it is easy to see that in this case L(f) is a

subanalytic subset of X.

1. Complex analytic case

Definition 1.1. Let /: V —► W be a continuous map of topological spaces. We

say that / is open at x £ V if the image of each neighbourhood of x is a

neighbourhood of f(x).

Note that the above condition does not mean that the image of any open

neighbourhood of x is an open (!) neighbourhood of f(x). If / is open at
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every point of X, then / is open (i.e., the image of an open set is open).

Definition 1.2. We say that a morphism (in some category) /: X —> Y is uni-

versally open at x £ X if for each morphism %: Y -» Y (in the same category)

the induced morphism f:X xYY ^ Y is open at every point corresponding to

x.

The following observation is basically due to Huber [Hu].

Lemma 1.3. In the category of complex or real analytic spaces and analytic mor-

phisms the following conditions are equivalent:

(1) /: X -•• Y is open at x £ X;
(2) /: X —► Y is universally open at x £ X;

(3) Every germ of real analytic curve y(t): ([0, e), 0) -» (Y, f(x)) can be

lifted (set theoretically) to a germ of real analytic curve y'(t): ([0, e), 0) —►

(X,x).

Proof. (1)<£>(3) follows from the curve selection lemma for subanalytic sets

([HI, (8.4)] or [DLS]). Of course (2)=>(1).

We shall show (1)=^(2) and let n: Y —> Y be any morphism and consider the

diagram

X ^— XxYY

f[ [f

Y <-       Y

Let x £ X xY Y be such that fi(x) =x. Let y:([0, e), 0) -* (Y, f(x)) be a
germ of a real analytic curve. Then, thanks to (l)o(3), we can lift y — n(y) to

y': ([0, e), 0) -»(X, x) (if y is constant equal to f(x) we choose y' constant

equal to x ). Then, the fibre product y' xy y is a lifting of y and by (1)<=>(3),

we conclude / is open at x . This ends the proof.   □

For a morphism f:X —> Y we denote by L(f) the set of points of X at

which / is open and by T(f) the complement of L(f). For an arbitrary
morphism of complex analytic spaces L(f) could be neither open nor closed

(see Examples 1 and 2 at the end of this paper and [EGA, (14.1.3)]) but we

shall show that it has to be constructible.

Theorem 1.4. Let f:X -> Y be a morphism of complex analytic spaces. Then

the set L(f) of those points of X where f is universally open (- open, by

Lemma 1.3) is constructible.

The proof is based on the following idea. First we change the base of / by

a proper surjective morphism n: Y -* Y such that the theorem holds for the

induced morphism /: X x Y Y -* Y . Then we apply

Lemma 1.5 (compare [EGA, (14.4.8.1)]). Let f:X —> Y be as above and let

n: Y —* Y be a proper surjective morphism. Let f:XxYY —► Y, n:XxYY —> X

denote the standard projections. Then T(f) — ft(T(f)).

In particular, if T(f) is constructible so is T(f).

Proof. Since / is universally open outside T(f) (Lemma 1.3) we have T(f) 2

fc(T(f)). Next we show the converse.
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Since n is proper so is % . Therefore the inverse images of a fundamental

system of neighbourhoods of x £ X form a fundamental system of neighbour-
hoods of n~x(x).

Let x £ X\ n(T(f)) and let Ux be a neighbourhood of x in X. We shall

show that f(Ux) is a neighbourhood of y = f(x). Since / is open at every

point of 7r_1(^), f(ft~x(Ux)) is a neighbourhood of f(ji~x(x)) = n~x(y).

Again, since n is proper, the image by n of any neighbourhood of n~x(y) is

a neighbourhood of y . Therefore n(f(n~x(Ux))) = f(Ux) is a neighbourhood

of y . Thus T(f) C n(T(f)). This ends the proof of the lemma.   □

Proof of Theorem 1.4 for proper morphisms. If f:X -* Y is proper and Y is

reduced then we can flatten it using the global flattening theorem [H3, Theorem

4.4]. Namely, there exists a proper morphism n:Y' -> Y, which is the com-

position of a locally finite family of blowings-up with nowhere dense centres,

such that the strict transform f':X' —> X of / by n is flat. By definition of

strict transform, X' is the smallest analytic subspace of X xYY' that contains

X xY (Y' - E), where E denotes the union of corresponding exceptional divi-

sors of n, and / is induced by the projection on the first factor. Therefore,

set theoretically X xY Y' = X' U X" , where f(X") is contained in E and

T(f) = T(f')U(X"\X'),

where again f:X xY Y' —> Y' denotes the projection. Since the flat maps are

open (see, e.g., [F, 3.19]), T(f') = 0 and consequently T(f) is constructible.

Hence, by Lemma 1.5, T(f) is constructible as desired.   □

We remark that in the proof the flatness could be replaced by a weaker prop-

erty such as, for instance, equidimensionality. We leave the proof of the fol-
lowing fact to the reader.

Remark 1.6 (Chevalley's criterion for openness [EGA, (14.4.4)]). Let

/:I-<y be as above. Then / is open at x if the following property, called

equidimensionality at x holds: for each irreducible component Y' of (Y, y),

where y = f(x),

dim(/-'(y), x) = dim(f-x(Y'),x) - dim(Y',y).

To flatten a nonproper morphism in place of blowings-up we shall use com-

positions of local blowings-up. We recall that a local blowing-up U —► U «-> Y

is the composition of an open embedding U <-» Y and a blowing-up U —* U .

Theorem 1.7 (Local flattening theorem [HLT, Theoreme 4; HI, Theorem 4.4]).

Let f:X —> Y be a morphism of complex analytic spaces and assume that Y

is reduced. Let y £ Y and let L be a compact subset of f~x(y). Then there

exists a finite number of morphisms na: Ya -» Y such that each of them is the

composition of (finitely many) local blowings-up with nowhere dense centres and

(i) for every a, there is a compact subset Ka of Ya such that \Jann(Ka)

is a (compact) neighbourhood of y in Y.

(ii) for every a, the strict transform fa:Xa-> Ya of f by na is flat at every

point corresponding to L.
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Remark 1.8. For our purpose we can replace (ii) by a weaker condition:

(ii') for every a, the strict transform fa: Xa -* Ya of f by na is equidi-

mensional in a neighbourhood of the set of points corresponding to L.

See [P, Corollary 1.2] for the proof of such a weaker version of Theorem 1.7

(where it is proven under an additional assumption that Y is nonsingular but

the proof there can be easily adapted to arbitrary Y or we can resolve first the

singularities of Y using [H2] or [BM]).

Proof of Theorem 1.4 (general case). Fix x £ X. We shall show that the germ

(T(f),x) is constructible.

By Theorem 1.7 there is a family {na:Ya —> Y} of compositions of local

blowings-up with nowhere dense centres satisfying (i) and (ii) for L = {jc} .

Since local blowings-up are not proper in general we cannot use Lemma 1.5

directly. Instead, we proceed by induction on the total number n(x) of local

blowings-up in {na} . If n(x) = 0 then / is flat at x and (T(f), x) is empty.

Note that we can pull back the family {na} by a local blowing-up without

increasing the total number of blowings-up. Indeed

(a) Let U be a neighbourhood of y = f(x) and let K be a compact sub-

neighbourhood of y in U. Then {^a\n-',rj)} and {Ka n n~x(K))} satisfies

the statement of Theorem 1.7 for f\f-\(v) ■ The centres of local blowings-up in

Tta\n-\<V) are open subsets of those of na .

(b) Let o:Y' —> Y be a blowing-up with nowhere dense centre. Then, by

[HI, (2.16)] the strict transforms n'a: Y£ —»• Y' of na by a are compositions

of local blowings-up with nowhere dense centres (and these centres correspond

to the ones of na ). Let fa.X'a -» Y'a be the strict transform of /' by n'a and

let aa: Y^ -> Ya, a':X' -+ X be the induced proper maps. Then, {n'a} and

{K'a = o~x(Ka)} satisfy the statement of Theorem 1.7 for the strict transform

/' of / by a and L! = a''x(L).
(c) By (a), the point (b) holds also if cr is a local blowing-up with nowhere

dense centre.

Inductive step. Let a:Y' —> Y be the first blowing-up in one of na, say

nao . By (a), localizing around y, we can assume that a is a blowing-up.

Let us now follow the notation of (b) above. We claim that the total number

of local blowings-up in the family {n'a} is smaller than n(x). In fact, the

first blowing-up in n'ao is the strict transform of a by a so it is the identity.

Therefore, by the inductive assumption, (T(f'), x') is constructible for any

x' £ L'. Hence the germ (T(f'), L') is constructible and, since a' is proper

and by Lemma 1.5, we conclude that (T(f), x) is constructible. This ends the

proof of Theorem 1.4.   □

In general the converse of Chevalley's criterion for openness is not true (Ex-
amples 1 and 2). Nevertheless, we show below that it holds for a generic point

of the fibre.

Proposition 1.9. Let f:X —> Y be as above and assume for simplicity that X

and Y are of pure dimension. Then, for each y £ Y, the set L(f)nf~x(y) is
an analytic subset of X of dimension not greater than dim X - dim Y.

Proof. The set in question is closed for any topological map [EGA, (14.1.4)]

and constructible by Theorem 1.4.  Therefore, it is analytic.  Let us take any
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nontrivial morphism v.S -+ Y, where S is a curve and y £ Im(r). Then, the

set of points of f~x(y), where the induced morphism X xY S ^> S is open,

is of dimension dimX - dim Y. By Lemma 1.3, the set of points of f~x(y),

where / is open cannot be bigger, and thus we get the conclusion.   □

2. Remarks on the complex algebraic case

We show that Theorem 1.4 holds in the category of complex algebraic va-

rieties. Thanks to the following observation [Hu], it is the same to consider

Zariski or strong topology.

Lemma 2.1. Let f:X —>Y be a regular morphism of complex algebraic varieties.

Then the following conditions are equivalent:

(1) /: X -» Y is (Zariski) open at x £ X;
(2) f:X ->Y is (Zariski) universally open at x £ X;

(3) /:X —> Y is open (in the strong topology) at x £ X;

(4) f:X —> Y is universally open (in the strong topology) at x £ X.

Proof. (3)o-(4) follows from Lemma 1.3. (1)<=>(3) will follow from the proof
of Theorem 2.2. (2)=>(1) is immediate.

We sketch the proof of (1)=>(2). First note that it suffices to check the uni-

versal openness only for the change of base n: (Y, y~o) ~* (Y, f(x)), where Y

is an irreducible curve. Then, if it is not constant, it has finite fibres and so

has ii:X xY Y —> X. Let x = (x, y0). Then, the inverse image of a base of

neighbourhoods of x is a base of neighbourhoods of x. Therefore, if / is

open at x, then /: X x Y Y -+ Y is open at x.   D

Theorem 2.2. Let f:X —> Y be a regular morphism of complex algebraic vari-

eties. Then the set L(f) of those points of X where f is universally open (in

strong or Zariski topology) is constructible.

Proof of Theorem 2.2. The proof will be for both topologies simultaneously.

We proceed exactly in the same way as in the proof of Theorem 1.4 for proper

morphisms. Instead of the global flattening theorem we use Theorem 1 of [R,

Chapter 4] that says we can flatten / by blowing up an algebraic nowhere dense

centre (assuming Y is reduced). Let n: Y' -* Y be such blowing-up and let

/. X x Y Y' —► X be the induced morphism. Then T(f) is constructible: in the

strong topology by Lemma 1.5 and by its algebraic version [EGA, (14.4.8.1)] in

the Zariski topology, so is T(f) = n(T(f). This ends the proof.   □

In the proof above, the set of points T(f) where / is not open is the same

for both Zariski and strong topology. Therefore the same holds for T(f) -

n(T(f)). This shows the equivalence (l)o(2) in Lemma 2.1.

Example 1. Let /: C2 -> C2 be given by f(x, y) = ((x + y)x2, (x + y)y2).
Then / is open at the origin although dim(/_I(0), 0) > 0.

Indeed, if (p, q) ^ 0, then

/->, q) = (±px'2 + ±qx'2)-x'>(±px>2,±qxl2)
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and we can always choose the signs in such a way that \(±pxl2 + ±qxl2)\ >

\(±px/2, ±qx/2)\ and therefore we can always find (x, y) £ f~x(p, q) such that

\(x,y)\ <|(±/7l/2, itf1'2)!2/3. It is easy to see that L(f) = (C2\/-'(0))u{0} .

Example 2. Let ICC4 be the union of two coordinate planes

Xx = {(w , x, y, z) £ C4; w = x = 0},

X2 = {(w, x, y, z) £ C4; y = z = 0},

and let /: X -> C2 be given by

f\xx(y, z) = ((y + z)y, (y + z)z),

fx2(w, x) = ((w - x)w , (w - x)x).

Then neither fXl nor fXl is open at the origin but / is. Indeed,

(f\xXl(P,<l) = (MP + <irl/2(P,q),

(f\x2rl(p,q) = (±(p-q)-x/2(p,q)

and therefore we can always find (x, y) g f~x(p,q) such that |(jc,y)| <

|(p, q)\x'2 . It is easy to see that L(f) = (X \ f~x(0)) U {0}.
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