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Abstract. A nonautonomous competitive Lotka-Volterra system of two equa-

tions is considered. It is shown that if the coefficients are continuous and satisfy

certain inequalities, then any solution that is positive at some point has the prop-

erty that one of its components vanishes while the other approaches a certain

solution of the logistic equation.

1. Introduction

Consider the nonautonomous system of differential equations

(u'(t) = u(t)[a(t)-b(t)u(t)-c(t)v(t)],

W \ v'(t) = v(t)[d(t) - e(t)u(t) - f(t)v(t)),

where the functions a(t), b(t), ... , and /(/) are assumed to be continuous

and bounded above and below by positive constants. Given a function g(t),

we let gL and gM denote inf_00<,<00 g(t) and sup_00</<00 g(t), respectively.

In [2] it was shown that if the inequalities

ahfh > cMdM   and   bLdL > aMeM

hold, and if the coefficients a(t), ... , and /(/) are almost periodic, then (*)
has a unique almost periodic solution whose components are bounded above and

below by positive constants, which is globally asymptotically stable. The general

case, not involving almost periodicity, was considered in [1]. The periodic case
was studied in [4]. A similar system, involving reaction-diffusion equations,

with periodic coefficients was studied in [3]. For the ecological significance of
the system (*), the reader is referred to [7] and the works cited above.

The purpose of this paper is to study (*) under the assumption that the

inequalities

(1) aLfL> cMdM   and   bMdM <aLeL

hold.
In particular, we will show that if co\(u(t), v(t)) is a solution of (*) sat-

isfying the inequalities u(to) > 0 and v(t0) > 0 for some number to, then
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lim,_00w(f) = 0 and lim,_00[w(f) - u*(t)] = 0, where u*(t) is the unique

solution of the logistic equation

(2) u'(t) = u(t)[a(t) - b(t)u(t)]

such that 0 < S <u*(t)< A < co for certain numbers 3 and A.

Of course, a similar result, where the roles of u and v are interchanged, will

hold if the inequalities in (1) are replaced by

a\ifM < cLdL   and   bLdL > aMeM ■

This generalizes the constant coefficient case, which can be easily verified from

a phase space analysis of the system (see, e.g., [7]).

We wish to point out that the main result in this paper and some of the

methods used have been motived by [3]. Also, Zhou and Pao [8] established a

somewhat similar result for a system of reaction-diffusion equations where the

coefficients were assumed to be positive constants. Also see Gopalsamy [6].

2. Preliminary lemmAs

Henceforth we shall assume that the functions a(t), b(t), ... , and /(/) are

continuous, bounded above and below by positive constants, and satisfy the

inequalities (1).

Lemma 1. Let col(u(t), v(t)) be a solution of (*) such that u(to) > 0 and

v(to) > 0. If u(t) > e for all t > to, where e is a positive number, then

Mm^ooV^) = 0.

Proof. It follows (see [1]) that u(t) and v(t) are bounded and positive for all

t, t > t0 . Let u = lim,_00 inf u(t) and v = lim^oo supn(t). Then u > e > 0

and v > 0. It suffices to show that v = 0. Suppose that v > 0. In order to

obtain a contradiction, we first establish the inequality

(3) aL < bMu + cMv.

We consider the following two cases:

Case 1. Suppose that u'(t) has arbitrarily large zeros. Let {5„}^i be a

sequence of zeros of u'(t), where s„ —► co as n —> co. Let {t„}^, be a

sequence of numbers such that xn —» co and u(x„) —> u as n —> co. We can

assume that for each n there exists an integer mn satisfying smn < xn < smn+l .

Let on £ [sm„, smn+l] such that u(on) is the minimum of u(t) on the interval

[sm„, smn+l] ■ Since u(a„) < u(xn), it follows that limsupw(er„) < lim inf u(o„).

Hence, lim„_00 u(on) exists and limn^oc u(o„) = u. Clearly, u'(o„) = 0.

Therefore, from the first equation of (*), we obtain a(a„) - b(on)u(an) +

c(a„)v(o„) and hence «l < bMu(on) + Cm supr>(Jn v(t). By taking the limit of

the right-hand side as n —> co , we obtain the inequality aL < b^u + CmV .

Case 2. Now suppose that u'(t) ^ 0 for / > tx for some number t\ .

Then lim,_00w(?) exists and lim,_00 u(t) = u. Since u(t) is bounded, there

exists a sequence {Cn}'£Lx such that u'(Cn) —» 0 as n —<■ co. Hence, a(C,n) -

b(tn)u(£n)-c(Cn)v(Cn) -> 0 as n -> oo . Since aL-bMu(t„)-cMs\ip,>rn v(t) <

a(Cn)-b(Cn)u(Cn)-c(Cn)v(Cn), we obtain, by taking limits, aL-bMu-cMv < 0.

It follows from a similar argument that

(4) dM>eLu + fLv.
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For example, in Case 1, where v'(t) would have arbitrarily large zeros, one

would let v(an) to be the maximum of v(t) on [smn, sTOn+1].

Now, multiplying (4) by -Cm/A and adding the result to (3), we obtain

Cm j l       Cm
aL--rdM<   bM-~reL IL-

Jl L Jl

Thus it follows from (1) and the fact that u > e > 0 that (bMft - CMeiMh
> 0. Similarly, multiplying (3) by -e^/bM and adding it to (4), we obtain

[(bstfL - c\fei,)/bM]v < 0. Since from the above inequality we have bi^A -

cm£l > 0 and b\i > 0, it follows that v < 0, which is a contradiction. This

completes the proof of the lemma.

Lemma 2. Let k and e be numbers such that k > d\j/fL, e > 0, and aL -

biuc - c\fk > 0. If col(u(t), v(t)) is a solution of (*) such that it(to) = e and

v(to) = k, then v(t) ->0 as t —► co.

Proof. We note that

u'(to) = u(t0)[a(t0) - b(t0)u(t0) - c(t0)v(t0)]

> E[aL-bMe-cMk] > 0,

v'(to) = v(tQ)[d(t0) - e(t0)u(t0) - f(t0)v(t0)]

< k[dM - f(t0)k] < 0

since k > dM/fL . We wish to show that u(t) > e and v(t) < k for all t > t0.

These inequalities certainly hold for / close to to and t > to since u'(to) > 0

and v'(to) < 0. If they did not hold for all t > to, then there would exist

a number 7 such that u(t) > e and v(t) < k for to < t < 1 and either (a)

w(7) =6 or (b) v(l) = k. If (a) held, then we would have u(Y) < 0 and
v(l) < k . Therefore, we would have

0 > u'(l) = u(l)[a(l) - b(l)u(l) - c(l)v(l)] > e[aL - bMe - cMk] > 0,

a contradiction. If (b) held, then we would have 0 < v'(l) and e < u(l). But
v'(l) = k[d(l) - e(i)u(l) - f(I)k] < k\dM- fLk\ < 0, again a contradiction. The
assertion of this lemma now follows from Lemma 1.

Lemma 3. There exists a unique solution u*(t) of the logistic equation

(L) u'(t) = u(t)[a(t)-b(t)u(t)]

such that 5 < u*(t) < A on (-co, co), where A and d are any numbers

satisfying the inequalities 0 < d < ai/bM and aM/bL < A.

It appears that this lemma ought to be known. In fact, the referee of this

paper has pointed out that it follows from [5]. While this appears to be the case,

it is not obvious. Therefore, for the convenience of the reader we give here an

independent and elementary proof.

Proof. For each positive integer n, let u„(t) be the solution of (L) satisfying

u„(-n) = A. Then u'„(-n) = A[a(-n)-b(-n)A] < Ata^-^zA] < 0. Hence for

/ + n small and positive we have 8 < u„(t) < A. It follows that this inequality

holds for all t > -n . For, suppose not. Then there exists a number 1 > -n,

such that 3 < un(t) < A for -n < t < 1 and either (i) u„(t) — 8 or (ii) un(i) -



202 SHAIR AHMAD

A. In the first case we must have u'„(l) < 0. But u'„(l) = S[a(l) - b(l)d] >

S[aL - bMS] > 0, a contradiction. In the second case we have u'„(l) > 0. But

u'„(t) = A[a(t) - b(i)A] < A[aM - &/_A] < 0, again a contradiction. This shows

that 8 < u„(t) < A holds for all t > -n. In particular, 8 < un(0) < A holds
for all positive integers n . Therefore, there exists a subsequence {^(0)}^,

of {u„(0)} such that u„k(0) -» u0 as k -> co, S < w0 < A. Let u*(t) be

the solution of (L) such that u*(0) = «o • Then, since each u„k(t) satisfies (L)

and u„k(0) —> «o as k —* co, it follows that u„k(t) —► u*(t) uniformly with

respect to t on compact subintervals of (-co, co). Since for each number tx,

3 < u„k(tx) < A if -nk < tx, we must have 3 < u*(tx) < A.

In order to establish the uniqueness, we assume that (L) has two solutions Ux

and U2 satisfying 3 < Uk(t) < A for k — 1, 2 and t £ (-co, co). Since we
have a first-order differential equation, we can assume, by uniqueness, that 8 <

!/,(/) < U2(t) < A. Now, (d/dt)\n Ux - (d/dt)In U2 = b(t)(U2(t) - Ux(t)) > 0.
This shows that In Ux(t)/U2(t), and hence Ux(t)/U2(t) is strictly increasing.

Thus, Ux(t)/U2(t) < Ux(0)/U2(0) < 1 for t < 0 and

£W['-ti]>0 for'£0-

Integrating from T to 0, T < 0, we obtain

lam-,nWn'J°mUl<,)-u'{,))d'

*jM-3S}]*>«-
Therefore,

This shows that limT--,-oolnC/i(F)/C/2(F) = -oo. Consequently, since 8 <

Ux(t) < U2(t) < A, we conclude that UX(T)/U2(T) -> 0 as T -> -co. But,

UX(T)/U2(T) >8/U2(T) >8/A, which leads to a contradiction. This completes
the proof of Lemma 3.

Lemma 4. Let k, e, and 8 be numbers such that k > dni/fi,, 0 < e < 3 <

ctL/bM. and aL - 6a/£ - cxjk > 0. If col(w(0, v(t)) is a solution of (*) such

that co1(m(/o) , v(to)) = col(e, k), then u*(t) - u(t) -»0 as t -» co, where u*(t)

is the unique solution of Lemma 3.

Proof. As shown in the proof of Lemma 2, u(t) > s for / > to ■ Moreover, (see

[1]), u is bounded above for t > t0. Let w(t) = l/u(t) and w*(t) = \/u*(t)

for t > to . We have

w'(t) = -a(t)w(t) + b(t) + c(t)v(t)w(t),

w*'(t) = -a(t)w*(t) + b(t),

and hence

(5) w'(t) - w*'(t) = -a(t)(w(t) - w*(t)) + c(t)v(t)w(t)

for t > to .
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We consider two possibilities:

(I) There exists tx > t0 such that (w - w*)'(t) ^ 0 for t > tx.
(II) There exists a sequence of numbers {5„}f in [to, co) such that for

n > 1, s„ < sn+x, (w - w*)'(sn) = 0, and s„ -* oo as n —► co .

If (I) holds, then lim,_oo(u;(*)-w*(0) exists. If lim,_,oo(iu(0-w*(0) = 0,
then, since u(t) and «*(*) are bounded and

u*(t) - it(t) = u*(t)u(t)(w(t) - w*(t)),

it follows that u*(t)-it(t) —> 0 as t -> co . If (I) holds and lim/_>00(to(r)-u;*(f))

^ 0, then since a(f) > tfz. > 0 and, according to Lemma 2, .0(f) —> 0 as

t -> co, (5) implies the existence of numbers a > 0 and t2 > tx such that

\(w - w*)'(t)\ > a for all t > t2. Since this contradicts the boundedness of

w(t)-w*(t) on [to, co), it follows that if (I) holds, then lim/_00(«(f)-M*(f)) =

0.
If (II) holds, let t„ G [5„ , 5„+i] be chosen for each n > 1 such that

(6) \w(Tn)-w*(xn)\=   max   |u;(0-w*(0l-
Sn<t<S„+l

Since (to - t/j*)'(j„) = 0 for n > 1 , it follows that (w - w*)'(t„) = 0 for

n > 1. Therefore, by (5), «j(t„) - io*(t„) = c(r„)t)(T„)u;(T„)/a(T„).
Since a(t) > Ol , w(t) and c(t) are bounded, and v(t) -» 0 as f —> co , we

see that

(7) lim («;(!„)-w*(t„)) = 0.

Since s„ -> co as « -♦ co, it follows from (6) and (7) that w(t) - w*(t) -* 0

as t -» co. Therefore, if (II) holds we have lim,_00(w*(f) - «(f)) = 0.

Since the possibilities (I) and (II) are exhaustive, the lemma is proved.

Lemma 5. Let kx > A, where A is a number as in Lemma 3. If u(t) is a

solution of (IS) satisfying u(t0) = kx, then it(t) -«*(()-»0 as t —> co.

Proof. Since it(to) > u*(t0), it follows that u(t) > u*(t) for all t in (-co, co).
Let w*(t) = l/u*(t) and w(t) = \/u(t). Then, w*' = -aw* + b and w' =

-ai& + b . Hence,

w(t) - w*(t) = e~ 4a(i)rfi(u)(f0) - w*(fo))   for f > t0.

But,

- / a(s)ds<-aL(t-t0),       t>t0.
Jt0

Therefore, w(t)-w*(t) -+ 0 as t -> co, and hence (u*(t)-u(t))/u*(t)u(t) -* 0

as f -» oo.   Since w(f) > u*(f) > J, we conclude that fi(f) - w*(f) -»0 as

t —* oo.

Lemma 6. Let k and kx be numbers as defined earlier. If col(u(t), v(t)) is a

solution of (*) such that 0 < u(to) < kx and 0 < v(t0) < k, then u(t)-u*(t) -*

0 and v(t) -»0 as t -» co.

Proof. We may assume that e in Lemma 2 satisfies the inequalities 0 < e <

aiu/bL <A<kx, e < u(to), and aL-bM£-c\fk > 0. Recall that col(w(f), v(t))
is the solution of (*)  such that ii(to) = e and v(to) = k.   We note that
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col(u(t), 0) is also a solution of (*), where u(t) is the solution of Lemma 5

satisfying the initial condition u(t0) = kx . Since w(fn) < u(t0) < u(t0) and

v(to) > v(t0) > v(to), we have u(t) < u(t) < u(t) and v(t) > v(t) > v(t) for

all t > to (see [1]), where v(t) denotes the second component of the solution

col(u(t), 0). Since v(t) = 0, and v(t) -+ 0 as t -> co, it follows that v(t) -> 0

as t -> co . Similarly, since u(t) - u*(t) < u(t) - u*(t) < u(t) - u*(t), and since

ii(t) - u*(t) —> 0 and u(t) - u*(t) —► 0 as f —> co, we obtain the desired result

that u(t) - u*(t) -> 0 as / -» co.

3. Main result

We are now ready to prove our main result.

Theorem. Assume that a(t), b(t), ... , and f(t) are continuous, bounded

above and below by positive constants, and satisfy the inequalities in (1). If

co\(u(t), v(ij) is any solution of (*) such that u(t0) > 0 and v(t0) > 0 for
some to in (-co, co), then v(t) —► 0 and u(t) - u*(t) —> 0 as t —> co, where

u*(t) is the solution of the logistic equation described in Lemma 3.

Proof. In view of the above lemmas, it suffices to show that there exists a

number tx > to, such that 0 < u(tx) < kx, and 0 < v(tx) < k. To this

end, suppose that u(t) > kx for t > to (recall that kx > A > au/bi) ■

Then u'(t) = u(t)[a(t) - b(t)u(t) - c(t)v(t)] < u(t)[a(t) - b(t)kx] < 0. Hence,

u'(t)/u(t) < a(t)-b(t)kx < aM~bLkx < 0. But this implies that lnu(t) -* -co,
and hence u(t) -+ 0 as t —» co , which is a contradiction. This shows that there

exists a number lx > to such that u(tx) < kx . Similarly, there exists a number

*2 > to, such that v(l2) < k . Let tx = max(7i, 12), and the proof is complete.
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