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NONRESONANCE CONDITIONS ON THE POTENTIAL
FOR A SECOND-ORDER PERIODIC BOUNDARY VALUE PROBLEM

PIERPAOLO OMARI AND FABIO ZANOLIN

(Communicated by Charles C. Pugh)

Abstract. We consider the periodic problem

-u" = f(u) + h(t),

u(0) = u(2n),       u'(0) = u'(2«),

and prove its solvability for any given h, under new assumptions on the asymp-

totic behaviour of the potential of the nonlinearity /, with respect to two con-

secutive eigenvalues of the associated linear problem.

1. Introduction and statements

In this paper we are concerned with the solvability of the periodic problem

fin -u" = f(u) + h(t),
[ ' ' u(0) = u(2n),        u'(0) = u'(2n),

where / is a continuous real-valued function, h £ Lx(0, 2%), and solutions

are intended in the Caratheodory sense. Here, we consider the case, extensively

discussed in the literature, where the nonlinearity / lies asymptotically be-

tween two consecutive higher eigenvalues of the linear operator -d2/dt2, with

periodic boundary conditions on [0, 27r]. Precisely, we suppose that

for some integer N > 1,

(f,) N2 < liminf f(s)/s < lim sup/(.?)/.* < (N + l)2.
s->±oo s—±oc

As is well known, this assumption is not sufficient to ensure nonresonance, i.e.,

the existence of a solution to (1.1) for any given h . Conversely, if u denotes a

solution of (1.1), subtracting from both sides of the equation N2u (respectively,

(N+l)2u), multiplying by an eigenfunction corresponding to the eigenvalue N2

(respectively, (N + l)2), and integrating, one sees that a necessary condition

for nonresonance is that both functions f(s) - N2s and (N + l)2s - f(s) be

unbounded on R. Yet a recent result [DIZ, Theorem 5.2] shows that even the

strengthened form of unboundedness

(f2) N2 < lim sup f(s)/s   and    lim inf f(s)/s < (N + 1 )2
j—±oo s->±oo
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is not sufficient, together with (fx), to yield nonresonance. Indeed, according

to [DIZ], for any integer M > 1 , there exists a nonlinear map /, with

A = liminff(s)/s < limsur)f(s)/s = B
s^±oo s—±oo

and M2 £ [A, B], such that (1.1) has no solution, for some smooth function

h.
On the other hand, the inequalities

liminff(s)/s < liminf2.F(.>)/s2 < limsup2.F(.y)/s2 < limsup/(.>)/s,
s->±oo s—±oo s—±oo s->±oo

where F(s) = L s] f(£) dt;, naturally lead one to introduce the following con-

dition, stricter than (f2),

(F0) N2 < limsup2/;'(5)/52   and    liminf2F(.s)/:>2 < (N + l)2

and to ask whether it yields nonresonance, when is coupled with (f i). A positive

answer is provided by the following theorem, where it is also shown that (Fo)

can be slightly weakened, requiring that the inequalities be satisfied only at +oo

or at -oo . (Technically, this exploits the fact that eigenfunctions corresponding

to nonzero eigenvalues change sign on [0, 2n].)

Theorem. Assume (fx) and suppose that at least one of the following conditions

holds

(Fi) N2 <limsup2F(s)/s2   and   liminf2F(s)/s2<(N+l)2,
s-»+oo s->+oo

(F2) N2 < lim sup 2F(s)/s2   and   lim inf 2F(s)/s2 < (N + 1 )2,
s—-oa S—-00

(F3) W2 < lim sup 2F(s)/s2   and   lim inf 2F(s)/s2 < (N + 1 )2,
S-f + OO s^-oo

(F4) N2 < lim sup 2F(s)/s2   and   lim inf 2F(s)/s2 < (N + 1 )2.
S-y-oo J^+oo

Then problem (1.1) has at least one solution for any given h £ Lx(0, 2n).

We recall that conditions (f)) and

(F5) Ar2<liminf2F(.y)/s2   and    \immx>2F(s)/s2 < (N + l)2

have been recently considered in [CO] in the context of elliptic equations, and

they turn out to be equivalent (cf. [G02, Appendix]) to certain density con-

ditions first introduced in [DFG]. Of course, (F0) and therefore each (F,),

i = 1, ... , 4, are weaker than (F5); the following example shows that this is

still true when (fi) is assumed as well.

Example. Let {an} and {bn} be two increasing sequences of real numbers,

with

0 < an < bn = an+x - 1

for every neN. Suppose also that {an} satisfies the recursive relation

ao — 0   and   an+x >a2 + 2.

Let g: R —► R be any continuous function such that

\g(s)/s\ < 1
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for every s ^ 0 and

f s     for a„ < s < bn , n even,
g(s) = <

i -s   for an < s < b„, n odd.

Setting G(s) = L  . #(<!;) 6?^, we have, for any even integer n ,

G(b„) = I     g(Z) d£+ f        g(0 dZ+ f        g(£) di
J[0,a„] J[a„,b„-\] J[b„-\,b„]

>-x2a2n + \(bn-\)2-{a2n + bn-\

= \(bn - l)2 - a\ + an+x - 2 > \(bn - l)2.

Hence, we conclude that

limsup2C7(s)/.s2 = 1        I = lim sup g(s)/s j .

A similar computation, performed on G(b„), with n odd, yields

lim inf 2G(s)/s2 = -1        [ = lim inf g(s)/s ) .
s—>+oo y    lil-,+00 j

Finally, for any fixed integer N > 1 , we set

f(s) = i(7V2 + (N+ l)2)s + lj(2N + l)g(s)

for s £ R.  Note that no condition is imposed on f(s), for 5 < 0, besides

N2<f(s)/s<(N+l)2.

Clearly, the function / just defined satisfies condition (f[) and (Fj), but

does not satisfy (F5). Accordingly, we are able to produce the example of a

problem to which our result applies, while that in [CO] does not. We also stress

that neither the related results given in [ALP, MW1, D, OZ, MW2, GOl, FF,
DIZ, DZ, R, Q], can be used here, even if they cover other situations where our

theorem may fail.
Finally, we point out that a result similar to that stated above holds as well

for the Picard or the Neumann problems associated to the equation in (1.1).

Further details in this direction will be given elsewhere.

2. Proof

We will prove the theorem under assumptions (fi) and (Fx) or (f]) and

(F3), since in the remaining cases the proof proceeds similarly.

Let us fix a number <5, with N2 < i3 < (N + l)2, and let us denote by H

the operator that sends any function e £ Lx(0, 2n) on the unique solution

u G W2 •' (0, 27r) of the problem

-u" - du = e(t),

u(0) = u(2n),        u'(0) = u'(2n).

Then the solutions of problem (1.1) in W2 •' (0, 2n) are precisely the solutions

in, say, C°([0, 2^]) of the compact fixed point equation

(2.1) u = H(f(u)-$u + h).
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We will solve (2.1), applying Leray-Schauder degree theory. To this end, we

consider the homotopic equation

u = XH(f(u) -du + h),

with X £ [0, 1], which corresponds to the problem

-u" = (I - X)$u + Xf(u) + Xh(t),

( ' ' u(0) = u(2n),        u'(0) = u'(2n).

Throughout, u will stand for an arbitrary solution of problem (2.2), for

some X £ [0, 1]. Moreover, P and Q will denote, respectively, the orthogonal

projections in L2(0,2n) onto the eigenspaces Span{sin(./v7), cos(Nt)} and

Span{sin((7V + l)t), cos((N + 1)0} , corresponding to the eigenvalues N2 and

(N + l)2. Of course, P and Q can be extended as bounded operators to

Lx(0, 27t). Finally, we will indicate by | • \p , with 1 < p < oo and || • || the

norms of 1/(0, 2n) and W2'x(0, 2n), respectively.

Step 1.   We prove that assumption (fx) implies that

for every e > 0, there exists a constant cE depending only on e

such that ||w - Pu - Qu\\ < e\u\2 + ce.

The equation in (2.2) can be rewritten in the form

(2.4) -u"-N2u = g(t,u,X) + X(h-Ph),

where g(t, s, X) = (1 - X)&s + Xf(s) - N2s + X(Ph)(t), for t £ [0, 2k], s g R,
and X £ [0, 1]. The function g is continuous and satisfies

(2.5) 0 < lim inf g(t, s, X)/s < lim sup g(t, s, X)/s <2N+l,
s->±co s—±oo

uniformly in t £ [0, 27t] and X £ [0, 1]. By elementary computations, one can

prove that (2.5) implies that

for every e > 0, there exists dE such that

(2'6) sg(t,s,X)>(2N+\)-x\g(t,s,X)\2-e\s\2-dE,

for every t £ [0, 2n], 5 G R, and X £ [0, 1].
Let us denote by K the operator that sends any function w £ Lx(0, 2n),

with Pw - 0, on the unique solution z £ W2^ '(0, 2n), with Pz = 0, of the

problem

-z" -N2z = w(t),

z(0) = z(2n),        z'(0) = z'(2n).

Of course, K is bounded from L'(0, 27r)nkerP to W2>x(0, 2n). Then we ob-

serve that Pg(', u, X) = 0 and multiply the equation in (2.4) by Kg(-, u, X).

Integration by parts and the use of the boundary conditions give

(u, g(-, u, X)) = (g(., u, X),Kg(-, u, X))+X((I-P)h,Kg(-,u, X)),
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where (•, •) stands for the L2-bilinear pairing and / denotes the identity op-

erator. Hence, using (2.6) and KQ = QK, we easily obtain

(2N+ iyx\Qg(-, u, X)\2 + (2N + 1)-'|(/ - Q)g(-, u,X)\2 - e\u\22 - 2nd,

< (g(-, u, X),Kg(.,u,X))+X(K(I-P)h, g(-,u,X))

< (Qg(., u,X),KQg(-, u, X)) + ((I-Q)g(-, u, X),K(I - Q)g(-,u,X))

+ X(K(I-P)h,g(-,u,X))

<(2N+irx\Qg(.,u,X)\2 + (4N + 4)-x\(I-Q)g(.,u,X)\22

+ \K(I-P)h\2(a\u\2 + b),

because

sup{(w, K(I-Q)w) :Pw = 0andM2= 1} = (4/V +4)_1.

Hence, we can conclude that

for every e > 0, there exists re such that

( \(I-Q)g(>,u,X)\2<e\u\2 + re.

Now we rewrite equation (2.4) in the form

u-Pu = Kg(-, u, X) + XK(I - P)h.

Applying the projection Q and using again KQ = QK, we find

Qu = KQg(-,u,X)+XKQh.

Subtraction then gives

(2.8) u-Pu-Qu = K(I- Q)g(- ,u,X) + XK(I -P-Q)h.

Finally, (2.7) and (2.8) yield (2.3), by the boundedness of K.

Step 2.   We prove that (fi) implies the estimate

for every e > 0, there exists ke such that if |m|oo > k£ then either

||m —jPm|| < e|«|oo   or   ||m - Qu\\ < e|w|oo ■

Assume, by contradiction, the existence of a sequence {un} of solutions of

(2.2), for X — X„ £ [0, 1], with |w„|oo -> +°o , such that

||m„-.Pw„||/KU >eo   and   ||m„ - 0m„||/|w„|oo > e0

for some eo > 0. From (2.3), we know that

||"„-/,««-Q«»U/Kloo^0.

Moreover, since Im P and Im Q are finite-dimensional spaces, there exists a

subsequence of {«„} , we can still denote by {u„} , such that

Pun/\un\oc -> <P GlmP   and   £?m„/|m„|oo -> y/ £ ImQ.

Accordingly, we get Hn/|M„|oo —> v = (p + y/, in W2>x(0, 2n), with |v|oo = 1

(note that v is an analytic 27r-periodic function). Of course, we can also

suppose that M'„'/l«n|oo —> v", a.e. in [0, In], and X„ -» X £ [0, 1]. Now we

set, for each n ,

pn = (\ - A^tfMn/Kloo + Xnf(un)/\Un\x .
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From the equation in (2.2), we derive that, possibly passing to a subsequence,

{pn} converges in Lx(0, 2n) and a.e. in [0, 2n] to some p £ Lx(0, 2n). This

function p can be written in the form p = mv , with m G L°°(0, 2n) satisfying

(2.10) N2 < m(t) < (N + I)2,

for a.e. t£[0,2n]. Indeed, let t be such that pn(t) -> p(t). If v(t) ^ 0 then

\un(t)\ -* +oo . Hence, for any fixed 8 > 0, we get by (fi)

N2 - 8 < pn(0|Wi,|oo/"«(0 <(N+l)2 + 8

for all large n and, therefore, passing to the limits

N2 <p(t)/v(t)<(N+l)2.

Finally, observing that v vanishes on a set of zero measure, we can set m(t) =

p(t)/v(t) for a.e. t£[0,2n] and conclude that m is measurable and satisfies

(2.10).
Accordingly, v is a 27r-periodic solution of the equation -v" - mv . Hence,

recalling that v = <p + y/ , we have

N2<p + (N + l)2y/ - mtp + my/.

Multiplying this relation by tp and y/ , respectively, and integrating on [0, 27r],

by (2.10), we get

0< /       (m-N2)<p2 = -[       mtpy/= [      (m - (N + l)2)y/2 <0,
J[0,2n] J[0,2n] J[0,2n]

which yields

/       (m - N2)<p2 = 0 = [       ((N + \)2 - m)y/2.
J[0,2n] J[0,2n]

Using the analyticity of <p and y/ and the fact that either tp £ 0 or v/ ^ 0,

we conclude that either m = N2 and ^ = 0 or m = (N + I)2 and tp = 0, a.e.

in [0, 2n]. This finally implies that

(I-P)un/\un\oo^(I-P)<p = 0

or

(I-Q)un/\un\oo^(I-Q)y/ = 0

in ^''(O, 27r). Thus a contradiction is reached.

Step 3.   We prove that (fi) and (F() imply that

there exist a sequence {R„}, with Rn —> +oo, and an integer «o

such that max u ^ R„,

for every n > no .

Let us set

gi(s, X) = (1 -X)$s + Xf(s) - N2s,

g2(s, X) = (I - X)tJs + Xf(s) - (N + l)2s



NONRESONANCE CONDITIONS 131

for 5 G R and X £ [0, 1] and denote by

Gx(s,X)= f     gx(i,X)di,        G2(s,X)= [     g2(Z,X)dcl
J[0,s] J[0,s]

the respective primitives.   A solution  u of (2.2) is then a solution of both

equations

(2.11) -u" -N2u = gx(u,X) + Xh,

(2.12) -u" -(N+l)2u = g2(u,X) + Xh.

Claim 1. For every e > 0, there exists kE such that if |w|oo > kE then either

\gx(u, X)\x < c(e\u\x + I)   or   \g2(u, X)\x < c(e\u\oc + 1),

where c is a constant independent of u, X, and e .

Indeed, fix e > 0, take u such that |w|oo > kE, and suppose that (cf.

(2.9)) \\u - Pu\\ < e|w|oo (in the other case, the proof would be similar). By

equation (2.11), using the boundedness of the operator -d2/dt2 - N2I from

W2'x(0, 2n) to Lx(0, 2n), we get, for some constant c,

\gx(u, X)\x = \-u" - N2u-Xh\x < c(||m-.Pw|| + 1) < c(e\u\00 + 1).

Hence, Claim 1 is proved.

Claim 2. There are constants kx and d (independent of u and X) such that

if |w|oo > kx then Iw'loo < d\u\oo .

Indeed, take u such that |w|oo > ^i > where kx is given by (2.9) for the

choice e = 1, and assume that ||u - Pu\\ < \u\oo (similar proof in the other

case). Hence, we have, for some constant d,

Iw'loo < \(Pu)'\oc + \(U - PuYloo < A/I^loo + \(U - PU)"\X < d^ .

Thus, Claim 2 is proved.

Claim 3. There are constants k2 and cx, c2 (independent of u and X), with

0 < C\ < 1 < c2, such that if |w|oo > k2 then

min u < 0 < max u   and   cx < max u/ - min u <c2.

Indeed, let {un} be any sequence of solutions of (2.2), for X = Xn £ [0, 1],

such that |«„|oo —y +oc . We know (cf. Step 2) that either

w«/|w«|oo —> <P,    with tp £ ImP and |^|oo = 1

or

un/\un\oc ^ V,      with ^ g ImQand I^U = 1

in W2'x(0, 2n) and then uniformly on [0, 2n].  Accordingly, we have that

either

maxw„/|M„|oo —<■ max^   and    minun/lunl^, —> min^

or

maxun/lunloo -» max y/   and    minun/^^oo —* min y/.

In any case, from max tp/ - min tp - 1 = max y// - min y/ , we get

max u„/ - min u„ —<■ 1.

Hence, Claim 3 follows arguing by contradiction.
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Note that for proving Claims 1 and 2 only assumption (fx) has been used,

while in the proof of Claim 3 the oscillatory properties of the eigenfunctions

have been exploited as well.

We now observe that (Fi) and the continuity of F(s)/s2 , for s ^0, imply

that

there exists a sequence {Rn}, with R„ -* +oc, such that

(Fi) N2 <   lim  2F(Rn)/R2„ < (N + I)2.
n—+oo

Using (F'[) and (f(), we then prove that

there exists an integer n0 such that, for every n > no,

max u ^ R„.

Under the above positions, (¥[) implies that there are constants ex, &2 > 0

such that

lim Gx(Rn , X)/R2n > e,    and     lim G2(Rn , X)/R2n < -e2,
n—>+oo n—»+oo

uniformly in X G [0, 1]. Take e > 0 such that

e < min{excx/(2cd), e2c2/(2cd)},

with c, d, cx given by Claims 1, 2, and 3, and let u be a solution such that

Moo > k = max{kE, kx, k2},

with kE,kx, k2 given by Claims 1, 2, and 3. Moreover, suppose that in Claim

1, it is

\gX(U,X)\x <c(fiMoo+l)

(similar proof in the other case). Let tx, t2£[0, 2n] be such that u(t2) = maxu

and u(tx) = 0 (tx does exist, since Claim 3 implies that u changes sign). Using

Claims 2 and 3, we easily get

Gx(maxu,X) = Gx(u(t2), X) - Gx(u(tx), X) = /      gx(u({), X)u'(0di
Jlti,t2]

< \gx(u, aJIiIm'Ioo < cd(e\u\00 + l)Moo

< e(cd/c2)(max u)2 + (cd/cx) max u.

Let «o be an integer such that, for every n > no,

Gx(Rn,X)>(ex/2)R2n

for every X £ [0, 1] and

Rn>max{k,((ex/2)-e(cd/c2))-x(cd/cx)}.

Hence, we easily conclude that max u £ R„ , for every « > «0 •

Step 4. We prove that (fi) and (F',) imply the existence of a solution of

problem (1.1).

Claim 4. For every A (> k2, with k2 defined in Claim 3), there exists B

(> ^2) such that if maxw < A then minw > -B .
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Indeed, by Claim 3, we know that, whenever M^, > k2,

min u < 0 < max u    and    cx < max u/ - min u <c2.

Hence, taking any B > A/cx (> k2), we have that if M^ > k2 and maxw < A

then

minw > -A/cx > -B.

Whereas, if M^ < k2   (< min{^, B}) then

-B < min u < max u < A.

Thus, Claim 4 is proved.
By Step 3 and Claim 4, we derive that, taking A = R„ , for any n > no, there

is no solution u of (2.2), with -B < u(t) < A , for every t £ [0, 27r], such that

maxw = A or minw = -B. Now let us define in C°([0, 2n]) the following

open bounded set, containing 0,

fi = {«e C°([0, 27i]): -B < u(t) < A for every t £ [0, 2n]}.

Since no solution u £ clQ of (2.2) for some X £ [0, 1] belongs to bdryQ, we

can conclude that equation (2.1), and therefore problem (1.1), has at least one

solution u £ Q according to the homotopy invariance of the degree.

Step 5. We prove that (fx) and (F3) imply the existence of a solution of

problem (1.1).
At first we note that two situations may occur:

(F,) lim inf 2F(s)/s2 < (N + 1 )2
J S — + OC

or

(F") liminf2F(5)/52 = (Ar+l)2>/V2.
s—>+oo

If (F'3) holds then (F3) implies (Fi), and therefore the existence of a solu-

tion of problem (1.1) follows from the previous steps. Accordingly, we have to

prove the solvability under (fi), (F'3'), and

(F") liminf2.F(.s)/<>2 < (N + l)2 .
s—» — OO

Clearly, (F'3') and (F'3") yield the following conditions for C7i(s,a) and
G2(s, X), respectively,

lim inf Gi (5, X)/s2 > ex > 0
s—>+oo

and for some sequence {Rn} with Rn —> +00

lim G2(-R„,X)/Rl <-e2<0,

where both limits are uniform in X £ [0, 1 ]. Take e > 0 such that

e < min{eic2/(2c(5?), e2/(2cdc2)},

with c, d, c\, c2 given by Claims 1, 2, and 3, and let u be a solution such that

Moo > k = max{rc£, kx, k2}
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with kE, kx, k2 given by Claims 1, 2, and 3. Now we distinguish between two

possibilities:

(2.13) \gi(u,X)\x<c(e\u\aa + \)

or

(2.14) \g2(u,X)\x <c(fi|M|oo + l).

Assume that (2.13) holds. Let tx and t2 be chosen as in Step 3. Proceeding as
in Step 3, we obtain

C7i(maxM, X) < e(cd/c2)(maxu)2 + (cd/cx)maxu.

Hence, it is clear that max u < R, for any R > 0 such that

Gx(s,X)>(sx/2)s2

for every s > R and X £ [0, 1], and

R > max{k, ((ex/2) - e(cd/c\))~x(cd/cx)}.

Assume now that (2.14) holds. Let tx, t2 £ [0, 2n] be such that u(t2) = minu

and u(tx) = 0. Proceeding as in Step 3, we get

G2(min u, X) = G2(u(t2), X) - G2(u(tx), X) = f      g2(u(i), X)u'(i) di
J[h,h]

> -\g2(u, X)\x\u'\oo > -cd(e\u\oc + l)Moo

> -e(cdc2)(min u)2 + (cdc2) minu.

Let «o be an integer such that for every n > no

G2(-Rn,X)<-(e2/2)R2n

for every X £ [0, 1] and

Rn > max{k, ((e2/2) - e(cdcl))~x(cdc2)}.

Hence, we can conclude that min u ± -R„ for every n> n0.

Finally, we are in position to prove the existence of a solution of problem

(1.1). Take an integer n > n0 such that Rn > R/cx, and, as in Step 4, define
the open set

fi = {« G C°([0, 2n]): -B < u(t) < A    for every t G [0, 2tt]} ,

where now B = Rn and A = c2B (> R). Let u be a solution of (2.2)

belonging to clfi. Clearly, u belongs to fi if M^ < k (< min{A,B}).
Therefore, suppose that \u\oo > k. By Claim 3, we have that if (2.13) holds,

maxw < R < A and then minw > -R/cx > -B. On the other hand, if (2.14)
holds, min u > -B and then max u < c2B = A . Accordingly, such a solution

u belongs to fi. The solvability of problem (1.1) then follows as in Step 4.
Thus the proof is concluded.
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