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FRACTIONAL DIFFERENTIATION IN THE SELF-AFFINE CASE III.
THE DENSITY OF THE CANTOR SET

N. PATZSCHKE AND M. ZAHLE

(Communicated by Charles C. Pugh)

Abstract. We compute the fractional density of the middle-third Cantor mea-

sure explicitly. Its numerical value is 0.62344... .

0. Introduction

A special result of Part I of this paper (see [11]) concerns self-similar random

processes X(t), i.e., random real-valued functions on R that have stationary

increments and the scaling property

r~aX(r(-)) = X   (in distribution)

for any r > 0, where a is the scaling exponent. It is shown that the fractional

derivatives in the mean

J Y(t\-     lim   l   fT\X(t + e~")-X(t)\^
daX(t) .= hm Tj/o   --si-du

exist at almost all t with probability 1 and equal a constant under certain

ergodicity conditions. In a later part we will prove similar relations for a general

class of strictly self-affine functions as considered in analysis (see, e.g., Kamae
[7], Kono [8, 9], Tricot [15, 16], and Hu and Lau [5, 6]). These functions

do not possess the classical fractional derivatives in the sense of Liouville or

of Marchaud; however, the fractional Cesaro derivatives mentioned above are

meaningful, and their connection with self-affine functions is the same as the

connection between classical derivatives and linear functions. A version of the

derivatives of order \ arises in natural manner in ltd calculus with respect to
such functions (cf. Bedford and Kamae [2]).

In order to demonstrate some general ideas we will deal with the special case

of the Cantor function that was treated in Bedford and Fisher [ 1 ] with other

tools. Our probabilistic method allows an explicit calculation of the derivative

(or of the density of the Cantor set in the language of measures, see Theorem
2). This has been an open problem until now.
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1. Fractal properties of the Cantor measure

Define the similarities Sx, S2: R —> R by

SX(X) = ^, S2(X) = ^ + y

The decreasing sequence C„ of compact sets given by Co = [0, 1], Cn =

SxCn-X U S2Cn-X determines the middle-third Cantor set C - f|„=0 C„ , which
is self-similar, i.e., C = SxC U S2C.

It is well known that the Hausdorff dimension D of C equals In 2/ In 3.

The normalized D-dimensional Hausdorff measure on R restricted to C is

said to be the Cantor measure q>. It may be constructed as the weak limit of

the measures

<pn:=(l)"5fLCn

where J? is Lebesgue measure and L means the restriction of a measure to a

set. Obviously, we obtain the invariance property

(1) <p = \<p o V + \<P o S2~X .

(For more details see Falconer [3].) O(x) := y>([0, x}), x £ [0, 1], is the

Cantor function or the so-called devil's stairway. It satisfies the scaling relation

<D(x) = 2<P(jc/3) .
In the next section we will recall a similar scaling property of the tangen-

tial measure of (p at a point chosen at random according to the (probability)

measure tp.

2. The random tangential measure
at the typical point of the cantor set

Define the distribution P0 of a random measure on R related to tp by

translating the origin into a point chosen at random with respect to tp :

P0 = jl{.)(Tx<p)<p(dx)

where Txp for a measure p on R denotes the translated measure p((-) + x).

For r > 0 let So,r be the "renormalized" similitudes on the space of locally

finite measures on R given by Sp,rp = rDM'/r) ■ With their help we define a

sequence of distributions of random measures

Pn = Po °Sd,1/3" •

Because of the simple structure of the Cantor set, it is not difficult to see

that the Pn converge weakly in the vague topology on the space of locally finite

measures towards a limit distribution P as n —» oo . Moreover, if the function

f(p) depends only on p L ([0, 3m]) then we have

Jf(p)Pm+n(dp) = jf(p)Pm(dp),        rtGN.
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(For strong proofs see Ulrich Zahle [17].) Consequently, if f(p) depends only
on p L [0, 1] then we get

(2) j f(p)P(dp) = f f(p)Po(dp).

By construction,

(3) PoS^1/3 = P = i>oS^3.

Remark. Similarly as in Patzschke and Ulrich Zahle [12] (for a more general

setting of self-similar sets) one can prove the convergence

^JTPooSDJ/ldtT^P.

Since SDt X/s oSD<X/t = SD<X/St, it follows that P is D-scaling, i.e.,

(4) PoS»)r = P,        r>0.

But for the aims of this paper the weaker invariance (3) is sufficient.

Similarly as in the case of integral-dimensional (nonrandom) measures (see,

e.g., Preiss [13]) P may be interpreted as the distribution of the random tangen-

tial measure of <p at the typical point of the Cantor set. (Of course, the notion

"tangential" becomes more appropriate for higher-dimensional measures.)

3. The Palm property of the tangential measure

This section will not be needed for the rest of the paper. The reader who

is interested only in the density of the Cantor measure may omit it. For all

others we give here a further interpretation of the distribution of the random

tangential measure. In Ulrich Zahle [17] the following invariance property of
P with respect to the translations (Tx)x€r is shown:

jj f(Txp, -x)p (dx)P(dp) = jj f(p, x)p (dx)P (dp).

(By the scaling property it suffices to prove the equation for Po instead of P

for which it follows from its definition.) This invariance characterizes P as

the Palm distribution of a uniquely determined (Tx) -invariant a -finite mea-

sure Q on the space of locally finite measures on R with finite intensity

* = /([0, l])Q(dp) (cf. Mecke [10]). This means that

P = X~X jj  \(.)(Txp)p(dx)Q(dp).

(Note that in our case the "quasi-distribution" Q is not finite. For more details

see the paper [17] mentioned above.) Hence, P may be interpreted as the

distribution arising from Q by translation of the origin into a point chosen "at
random" according to the measure underlying the quasi-distribution Q, i.e.,

the origin may be considered as the typical point of the support of the random

tangential measure of tp with distribution P. (A good introduction into the

theory of Palm distributions may be found in Stoyan, Kendall, and Mecke [14].)

In general, such measures like P, i.e., Palm distributions satisfying the scaling
property (4) for some D with respect to the origin are called in Ulrich Zahle [17]

D-scale invariant, since by the above arguments the origin there is the typical
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point of observation. (This is an axiomatic approach to Z)-scale invariance as

used in physics.)

4. The fractional density of the Cantor measure

The concept of (upper and lower) densities of geometric measures plays an

important role in the corresponding theory. Its connection with rectifiability

in the integral-dimensional case has been a large field of research in geometric

measure theory (for references, see Federer [4], Preiss [13]). Therefrom we

know that in the fractional case the usual densities do not exist. Bedford and

Fisher [1] first introduced the concept of Cesaro densities (called there second-

order densities) on the example of Cantor-type measures and of the measure of

the zeros of Brownian motion on [0,1]. We will give here another proof of

existence of the right and left densities of the middle-third Cantor measure

.+  , ,      ,•      1   [T <P([x, x + e~'])  ,,
d^tp(x):= hm - /    —-m--dt,

u r—oo T Jo e-'u

dDf(x) .= hmj JQ   --s—dt

at (p-a.a. x £ [0, 1 ]. We write

dDtp(x) := 2~D(d^(p(x) + d^tp(x))

for the symmetric density. Note that these densities may also be considered as

the D-fractional Cesaro derivatives of the Cantor function <J>(x) at almost all

x from the Cantor set.

Theorem 1. At tp-a.a. x £ [0, 1] we have

(5) d+D<p(x) = d»(p(x) = j J2r<p([y,y + 3-r])<p(dy)dr.

Proof of Theorem 1. For any locally finite measure p on R we have

t^oo T Jo        e-'D n^oo N Jo        e~tD
U (/V6N)

KSf,N J°       3"">
provided that the limit exists. The right-hand side equals

i N~[ rx
lim i-Y /   2r2np(3-"3-r[0, \])dr

= Jim ^E /   2r(SnD,)P)(l-r[0,\])dr.

Since the distribution P of the random tangential measure of tp is Sd,i-

invariant, BirkhofFs ergodic theorem implies that the last limit exists for P-a.a.

p and its expectation equals

j j 2rp(3~r[0,l])drP(dp).



FRACTIONAL DIFFERENTIATION IN THE SELF-AFFINE CASE III 141

In view of (2) we may replace P by Po and, therefore, the expection agrees

with

j 2rj<p([y,y + 3-r])(p(dy)dr.

Below we will prove that P is ergodic with respect to So,3 when restricted

to events depending only on the values of the measures on [0, 1]. In this case

we get

Urn i j* M[°:*~']) dt = jf' T j <p([y, y + 3-r])<p (dy)dr

for Po-a.a. p . Let E be the set of all normed measures p on R satisfying the

last equation. Then we have

0 = P0(Ec)= f  \Ec(Tx<p)<p(dx),
Jo

i.e., Txcp £ E for ^-a.a. x £ [0, 1]. Consequently, at these x the right density

dp<p(x) exists and takes the value in the assertion. Analogously, one can prove

that

d„<p(x) = j 2r j<p([y-r\y])<p(dy)dr

at (p-a.a. x, which coincides with the expression for dp<p(x) by symmetry.

It remains to show ergodicity. Define the function g: {0, 1}N -> [0, 1] by

.=1

Let [{0, 1}N, v, ©] be the Bernoulli system, i.e., v is the product measure

of the uniform distribution on {0, 1} and O is the shift

6(<ti , o2,...) = (o2, 03,-•■)■

From the construction in § 1 we infer

(6) <p = vog~x.

Let A be an arbitrary measurable set on the space of locally finite measures

on R depending only on the values of the measures on [0,1]. By the above

arguments we get for any x = g(a) £ [0, 1] and (5-measure 8Z

\s^A(Tx<p) = 1S-SA (Jtzz^-wyvm)

= lA(2J6EZ(Xi_a!)2/3i-lv(dx))

= 1^(2/^>--"-)2/3'L[°'lll/(rfT))

= U (2 j \{a{}(xx)8Yz^M_a^)2lvV(dx)^

= u(l5iZZ^-°^2i^{dT))-
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Similarly,

U(Tx<p) = \A (/^i(r,-CT,)2/3'i/(rfT))  •

Denote

S := {a G {0, 1}N : /^-^^ (dr) £ ^} .

Then we have by the definition of Fo that

P(A) = PQ(A) = v(E).

Suppose additionally that A is a P-almost So,3-invariant set, i.e.,

P(S»]3AAA)(= P0(S^3AAA)) = 0.

In this case the above equations yield

iy(e~xEAE) = P0(S^]3AAA) = 0.

Because of ergodicity of the Bernoulli flow, it follows that v(E) = 0 or  1.

Hence, P(A) = 0 or 1.   □

5. Computation of the density

Our final aim is to find the numerical value of do<P ■ We first transform the
integral in Theorem 1 as follows:

/ 2rj<p([y,y + 3-r])dr<p(dy)

= I   2r II 1[0, i/3](* - y)<P (dx)(p (dy) dr

+ j 2r jj l[,/3,3-'](* - y)<P (dx)tp (dy) dr

= j~2 // V '/3](* - V)9 (dx)<p (dy)

+ 11 l[i/3,i](^-y) / l[o,-\n(x-y)/\n3)(r)2r drtp (dx)y) (dy)

= hT2\ + hTI//1[1/3-1]{X ~y){{x ~yr° ~ l)(p{dx)<p{dy)

= ̂ 0 f     f  {x-y)-°<P(dx)(p(dy).
In 2 J0     J2j3

Because of (1) and symmetry, the last expression equals

J-^jj(u + v + l)-D<p(du)<p(dv).

By use of (6) we may continue with

^//(|(a, + r;)-| + l)     u(do)u(dx).
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Defining i.i.d. random variables &, £2, ... with P{<^, = 0} = \ , P{£, = -1} =

P{&= 1} = \ and putting

i=i

we obtain
d+tp = (2\n2)-xK(n + 2)~D.

Since the function (x + 2)"D for \x\ < 2 is representable by

(x + 2)-^2-°(l+g(-lrP'0+"-/ + "-"4.^

and |^| < 1, it remains to calculate the moments of the random variable n .

They are equal to

Et]2k-X =0,

,7,    E„* = £      £      2-^^L

x [(32" - 1)(32"+2''2 - 1)...(32,|+-+2" - I)]"1 .

Thus, we have proved

Theorem 2.

,_ ,+ 1      I   f.^D(D+l)-(D + 2k-l)     1 2k\

^^ = ^ = 2hT2 2^(1 + g-(2E)!-¥-E" )

where En2k is given by (7). The corresponding numerical values of the densities

are d^tp = 0.48272...  and dD(p = 0.62344....
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