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DIFFERENTIATION OF ZYGMUND FUNCTIONS

DAVID C. ULLRICH

(Communicated by J. Marshall Ash)

Abstract. The "little-o Zygmund class" A* contains a nowhere-differentiable
function.

0. Introduction

A classical result due originally to Rajchman and then improved by Zygmund

[ZY, p. 43] states that if / G X*(T) and / is real valued then / must be

differentiable on a dense subset of T. This implies that if F g Q30 (the "little-
o Bloch space") then Re(F) must possess a radial (and hence nontangential)
limit at each point of a dense subset of the boundary.

Somewhat more recently, it was shown [GHP, Theorem 2] that F itself must

have a radial limit at each point of a dense subset of the boundary, if F g 25 0 .

As noted in [GHP], this would follow from the result of Rajchman and Zygmund

if the latter were true for a general (complex-valued) element of X*, but this

question has been open. In this note we show that there exists an f £ X* that

is nowhere differentiable and that, in fact, satisfies a Holder condition of order
one at no point.

It turns out that the existence of a nowhere differentiable f £ X* is also one

of various results in [MAK2], including the fact that if / G X* and is either real-
valued or extends to a function holomorphic in the disc then the set of points
where / is differentiable must have Hausdorff dimension 1. (The results in

[MAK2] are proved in more detail in [MAK1], in particular, cf. [MAK1, Theo-

rem 5.5].) It seems that the extremely simple argument below may nonetheless

be of some independent interest: If u is an appropriate (real-valued) lacunary

trigonometric series then u £ X* and u is differentiable only on a set of measure
zero. Now one may construct v £ X* so that f = u + iv is nowhere differen-

tiable (in particular, we do not require the main technical device in [MAK2]—a

characterization of the dyadic martingales arising from elements of X*).

1. Theorem

The notation X*(T) refers to the "little-o " Zygmund class on the unit circle

T: we write / G X*(T) if / is a continuous (complex-valued) function on T
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and

Urn A-1|/(^'('"*)) - 2f(e") + f(ei{,+h))\ = 0,
A-»0

uniformly in t (the functions in X* are called "smooth functions" in [ZY]).

We set

Mf(t) = sup h-x\f(e^l+^)-f(e")\,
h>0

so that / satisfies a Holder condition of order 1 at e" if and only if Mf(t) <

oo.

Theorem. There exists f £X*(T) such that Mf(t) = oo.

We will set f =u + iv , where u £ X* is a (real-valued) lacunary series with

Mu = oo a.e. It is impossible to achieve Mu = oo here, but the following

proposition will provide us with a real-valued function v £ X* such that Mv =

co at every point of the set where Mu < co.

Proposition. Suppose E c T is an Fa of (Lebesgue) measure zero. Then there

exists a real-valued v £X*(T) such that (d/dt)v(e") = co for every t £ E.

This will follow from the following lemma. The notation VMO( T) refers to

the space of functions of vanishing mean oscillation, as usual.

Lemma. Suppose E is as in the proposition. There exists tp £ VMO(F) such

that tp > 0 on T and lim^-., <p(e's) = co for every e" £ E.

Proof. If we can prove the lemma for compact E then the general case follows

because <p > 0. Suppose E c T is a compact set of measure zero.

This implies that E is a peak set for the disc algebra: there exists a function

g that is holomorphic in the unit disc D and continuous on D, such that

g(eH) = 1 for eil G E, while \g(z)\ < 1 for z g D\E.
Now let Q = {x + iy : x > 1, \y\ < 1/x} and let y/: D —► fi be holomorphic

and surjective. A theorem of Caratheodory shows that y/ extends to a homeo-

morphism ^:D-tQ, where fi denotes the closure of fi on 5, the Riemann

sphere; we may take y/( 1) = co .

Thus G—y7og:D^S is continuous. Let tp = Re(C7). Then <p (restricted

to T) is a continuous map from T to [0, co] such that tp(ea) = oo for

e" £ E. We only need to show that tp £ VMO, but <p £ VMO because tp
is the harmonic conjugate of a continuous function: The point to our choice

of fi was that Im(z) -» 0 as z tends to co within fi, and this shows that

Im(C7)GC(F).   □

Proof of the proposition. Given an Fa set E c T of measure zero, choose tp as

in the lemma. Now define <px = tp - c, where c = (2n)~x /0 n <p(e") dt, and let

v be an absolutely continuous function such that (d/dt)v(e") = <px(e") almost

everywhere. It follows that (d/dt)v(e") — co for t £ E, while the fact that

<p £ VMO implies that v £ X*.   □

Note. We did not need to know that tp £ VMO to conclude that v £ X*; it

would be (exactly) enough to show that (the Poisson integral of) <p satisfies

a "little-o" Bloch condition lim|zH1(l - |z|)|Vp(z)| = 0 [ZY, p. 263], which
follows immediately from the fact that tp is the harmonic conjugate of a con-

tinuous function.
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Proof of the theorem. Choose a sequence a, > 0 with lirn/-_0O a, = 0 but

Y^jL\ d] = oo, and set

oo

u(e") = J2 2~J'«7 cos(2'f).

7=1

Now the fact that aj -* 0 shows that u £ X* [ZY, Theorem 4.10, p. 47],

while J2%\ a] = °° shows that Mu(e") = co for almost all t. This will be

"clear" to readers with some experience dealing with lacunary series; a proof is

already at least implicit in [ZY]:

Let dx(t) = - J2j=i cijsmftt). Then it is well known that (djf(t)) is un-
bounded for almost every value of t [ZY, Theorem 6.4, p. 203 and Remark

(c), p. 205]. But it is easy to obtain a uniform upper bound on the quantity

h-Nx[u(e^+h^)-u(e")]-dN(t)

if hff = 2~Nn, so that Mu = co at any point where (d^) is unbounded.

Now let E = {e" : Mu(e") < co}. We have just seen that E has measure

zero. Continuity of u £ X* shows that {Mu ^ j} is closed for j = 1,2, ... ,

so that E is an F„ . Choose v as in the proposition and let / = u + iv . Then

/ G X* and Mf = co .   □
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