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Abstract. For a bounded linear operator A on a Banach space we characterize

the isolated points in the spectrum of A , the Riesz points of A , and the poles

of the resolvent of A .

1. Terminology and introduction

Throughout this paper E will be an infinite-dimensional complex Banach

space and A will be a bounded linear operator on E. We denote by N(A) the

kernel and by A(E) the range of A. The spectrum of A will be denoted by

o(A). The resolvent set g(A) of A is the complement of a (A) in the complex

plane C. For any X in g(A) the resolvent operator (XI - A)~x is denoted by

Rx(A).
Let Xo be an isolated point in a (A). The spectral projection corresponding

to X0 will be denoted by PXo. We have E = PXo(E) © N(PXo).
In [3] Mbekhta introduced two important subspaces of E:

K(A) = {x e E : there exist c > 0 and a sequence (x„)„>x C E

such that Ax\ = x, Axn+X = x„ for all 77 £ N,

and ||x„|| < c"||x|| for all 77 £ N},

H0(A) = {x£E: lim H/Txll1/" = 0)
I n—>oo J

and proved the following

Theorem 1. A point Xq £ a (A)  is isolated in a (A)  if and only if there is a

bounded projection P on E such that

P(E) = H0(X0I - A)   and   N(P) = K(X0I - A).

In the present paper we shall prove that Ao £ o(A) is an isolated point of

a (A) if and only if K(X0I - A) is closed and E = K(X0I -A)® H0(X0I - A)
(where © denotes the algebraically direct sum). This characterization leads to
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a characterization of the poles of the resolvent of A and to a characterization

of the Riesz points of A. This will be done in §3 of this paper.

2. Preliminary results

The operator A is said to have the single-valued extension property (SVEP)

in Xo £ C if for any holomorphic function /:£/—> £, where U is a neigh-

bourhood of A0 , with (XI - A)f(X) = 0, the result is f(X) ee 0. We say that A
has the SVEP if A has the SVEP in each X £ C.

The following theorem collects some results due to Mbekhta (see [4]).

Theorem 2.    (a) A(K(A)) = K(A) and A(H0(A)) C H0(A);

(b) A has the SVEP in Xo if 770(Ao7 - A) is closed;
(c) A has the SVEP in X0 if and only if K(X0I -A)n 770(V - A) = {0}.

The proof of the next result is immediate.

Proposition 1. Let x £ Ho(A) and define the function g on C\{0} by

n=0

Then g is holomorphic and (XI - A)g(X) = x for all X £ C\{0}.

Proposition 2. Let F be a closed subspace of E such that A(F) = F.   Then

F C K(A).

Proof. Since F is a Banach space and A(F) = F , the open mapping theorem

shows the existence of a constant c>0 so that

for each u £ F there exists v £ F such that
(2.1)

Av = u   and   ||7j|| < c||w||.

Let x £ F . Use (2.1) to construct a sequence (x„)„>i C F such that Axx = x ,

Axn+X = x„ , and ||x„|| < c"||x||. It follows that x £ K(A).   D

Let us review the classical definitions of ascent and descent. The ascent p(A)

and the descent q(A) are the extended integers given by

p(A) = inf{/7 > 0 : N(A") = 7V(^"+1)},

q(A) = inf{n > 0 : An(E) = An+X(E)}.

The infimum over the empty set is taken to be oo.  It follows from [2, Satz

72.3] that if p(A) and q(A) are both finite then they are equal.
We have the following characterization of the poles of the resolvent of A

(see [2, Satz 101.2]):

Theorem 3. The complex number Xo is a pole of RX(A)  if and only if 0 <

P(XqI - A) = q(X0I - A) < oo. In this case we have

Pks(E) = N((XoI-Af)   and   N\PXo) = (X0I - Af'(E),

where p = p(X0I -A) is the order of the pole X0.

The next proposition is a generalization of [1, Theorem 2].
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Proposition 3. Suppose that A has the SVEP in Xo = 0 and q(A) < oo. Then

p(A) = q(A).

Proof. Let q = q(A), B = A«, and E = E/N(B). Since N(B) is closed, E

is a Banach space. Let B: E -+ E be the corresponding canonical injection. It

is easy to see that the operator B~x: Aq(E) —► 7s is closed, thus .4?(7s) is the

domain of a closed linear operator. Since A(Aq(E)) = Aq(E) and /I has the

SVEP in 0, [1, Corollary 4] shows that N(A)nAq(E) = {0} . Use [2, Satz 72.1]
to derive p(A) < oo.   □

Corollary 1. The following assertions are equivalent:

(a) 0 is a pole of Rx(A);
(b) A has the SVEP in 0 and q(A) < oo.

Proof, (a) implies (b). Since 0 is isolated in a (A), A has the SVEP in 0.
Theorem 3 shows that q(A) < oo .

(b) implies (a). Proposition 3 and Theorem 3.   □

3. Isolated points of the spectrum

The starting point of our investigation is

Proposition 4. Suppose that 0 is an isolated point in a(A). Then

(a) Po(E) = H0(A);
(b) N(P0) = K(A).

Proof, (a) follows from [2, Satz 100.2].
(b) Since 0 is isolated in a (A), o(A\p0(E)) = {0} and 0 £ g(A\N(Po)) [2, Satz

100.1]. Then N(P0) is closed and A(N(P0)) = N(P0). Hence, by Proposition
2, tV(7>o) C K(A). By Theorem 2(c), K(A) n H0(A) = {0}. Therefore,

K(A) = K(A) n E = K(A) n [N(P0) © P0(E)]

= N(Po) + K(A)nH0(A) = N(Po).   □

Theorem 4. The following assertions are equivalent:

(a) 0 is an isolated point in a (A);

(b) K(A) is closed and E = K(A) © 770(^)  ( © denotes the algebraically
direct sum).

Proof, (a) implies (b). Use Proposition 4 or Theorem 1.

(b) implies (a). Since K(A) is closed, A(K(A)) = K(A) (Theorem 2(a)),
and N(A) c Hq(A) , the operator A: K(A) —► K(A) is invertible. Hence there

exists e > 0 such that XI - A\K{A) is invertible if \X\ < s . In particular,

(3.1) (XI - A)(K(A)) = K(A)   if|A|<£.

Since for all X ± 0, N(XI - A) c K(A), we have

(3.2) N(XI-A) = {0}    if0<|A|<£.

By Proposition 1, for all X / 0,

(3.3) H0(A) C (XI - A)(E).

Now, (3.1) and (3.3) imply

E = K(A) © 77oM) C (XI - A)(E)    if 0 < |A| < e .
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Consequently, {X £ C : 0 < \X\ < e} C g(A) and the proof is complete.   □

Now we are in a position to present the announced characterization of the

poles of the resolvent of A .

Theorem 5. The following assertions are equivalent:

(a) 0 is a pole of the resolvent of A;

(b) A has the SVEP in 0 and q(A) < oo;
(c) There exists p £N such that

N(Ap) = Ho(A)   and   AP(E) = K(A);

(d) A has the SVEP in 0 and there exists p £ N such that K(A) = AP(E);
(e) q(A) < oo and Ho(A) is closed.

Proof. By Corollary 1, (a) and (b) are equivalent.

(a) implies (c). Use Theorem 3 and Proposition 4.

(c) implies (a).  By Theorem 3, we have to show that p(A) and q(A) are

both finite. Since

N(AP+X) C H0(A) = N(AP) C N(AP+X),

we have p(A) < p.   Use Theorem 2(a) to derive AP+X(E) = A(AP(E)) =

A(K(A)) = K(A) = Ap(E). Thus q(A) < p .
(a) implies (d). Use (b) and (c).
(d) implies (b).   As in the proof of "(c) implies (a)," we have AP(E) -

Ap+X(E), hence q(A) < oo .

(a) implies (e). Clear.
(e) implies (b). By Theorem 2(b), A has the SVEP in 0.   □

The remainder of this paper deals with Riesz points and Riesz operators. A

complex number Ao is called a Riesz point of A , if

p(X0I-A) = q(XoI-A) < oo   and    dimN(XoI-A) = codim(XoI-A)(E) < oo.

Note that a Riesz point of A is either a pole of the resolvent (and hence isolated

in o(A)) or a point in the resolvent set g(A).

Proposition 5. The complex number Xo £ a (A) is a Riesz point of A if and

only if Xo is isolated in a (A) and the corresponding spectral projection is finite

dimensional.

Proof. [2, Satz 105.3].   □

The next theorem uses the subspaces K(A) and H0(A) and the SVEP to

characterize the Riesz points of A .

Theorem 6. The following assertions are equivalent:

(a) 0 is a Riesz point of A;
(b) K(A)  is closed,  dimHo(A) < oo, and E = K(A) © H0(A), where ©

denotes the algebraically direct sum;

(c) q(A) < co and dim770(;4) < oo;

(d) dim770(^) < oo and K(A) = AP(E) for some p£N;
(e) A has the SVEP in 0, q(A) < oc, and dim N(A) < oo.
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Proof, (a) •<=> (b). Proposition 4 and Theorem 4.

(c) =*• (a). Since N(An) C N(An+x)_ C 770(^) and dim770(^) < oo, there

exists p £ N such that dim7V(^p) = dimAr(^p+l) < oo. This gives N(AP) =

7V(^+1), thus p(A) < oo. By Theorem 3, 0 is a pole of Rx(A), hence 0
is isolated in a (A). Proposition 4 shows that dimPo(E) < oo. Now use

Proposition 5.

(a) =>■ (d). Propositions 4 and 5 show that din\Po(E) = dim77o(^) < oo

and N(P0) = K(A). Since 0 is a pole of Rx(A), we conclude from Theorem
3 that K(A) = Ap(E) for some p £ N .

(d) =* (c). Ap+X(E) = A(K(A)) = K(A) = AP(E), thus q(A) < oo .
(a) => (e). Clear.
(e) =4> (a). By Proposition 3, p(A) = q(A) < oo. [2, Satz 72.6] shows that

dim N(A) = codim^Ts) < oo, thus 0 is a Riesz point of A .   □

The operator A is called a 7?/esz operator if every A e ct(^)\{0} is a Riesz

point of A.
An immediate consequence of Theorem 6 is

Theorem 7. The following assertions are equivalent:

(a) ^ is a Riesz operator,

(b) dim H0(XI -A)<oo, E = K(XI -A)® H0(XI - A), and K(XI - A) is
closed for all X £ a(^)\{0};

(c) q(XI - A) < oo and dim770(A7 - A) < oo for all X £ a(^)\{0};
(d) dim770(A7 - A) < oo for all X £ <r(i4)\{0} and for each X £ o(A)\{0}

there exists p(X) £ N such that K(XI - A) = (XI - A)pW(E).
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