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LIE AND JORDAN IDEALS IN B(c0) AND B(lp)
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(Communicated by Palle E. T. Jorgensen)

Abstract. It is shown that ideals with respect to the canonical Lie (commuta-

tor) product in these algebras are exactly the linear manifolds that contain the

images of their elements under the action of inner automorphisms induced by

invertible spectral operators of scalar type. Jordan ideals in these algebras are

identical with two-sided associative ideals and are also applied to a characteri-

zation of Lie ideals.

It is well known that any associative algebra A becomes a Lie algebra and a

Jordan algebra under the products defined by [F, G] = FG - GF and F o G =

^(FG + GF) for F, G £ A, respectively. (The ground field is C.) A linear
manifold L in A is called a Lie (Jordan) ideal if the corresponding (Lie or

Jordan) product belongs to L for every F £ A and G £ L. It is then a

two-sided ideal with respect to the corresponding product. Similarly, by an

associative ideal we shall understand a two-sided ideal under the associative

multiplication.
Remarkable characterizations of the (not necessarily closed) Lie and Jordan

ideals in the case when 77 is a complex infinite-dimensional separable Hilbert

space and A is 5(77), the (associative) algebra of all bounded linear operators

in 77, were described by Fong, Miers, and Sourour [3; Theorems 1 and 3] and

obtained partly by Topping (see [3, 11]). Fong and Murphy [4] showed that [3,
Theorem 1] is valid in the nonseparable case, too. The purpose of this paper is

to prove that [3, Theorems 1 and 3] can be extended in a suitable form for the

case when the underlying complex Banach space is either Co or lp  (1 < p < oo).

The proofs are based on some fundamental results of Pelczynski [9] on com-

plemented subspaces and isomorphisms in the Banach spaces above. Owing to

them, we can make use of several ideas, applied earlier in the case of a separable

Hilbert space, which we shall not reproduce here in detail. For a reference on

spectral operators see, e.g., the book of Dunford and Schwartz [1].

For a bounded linear operator in a Banach space X, ker and im will denote

its kernel and range subspace, respectively. An idempotent will be called any

operator P £ B(X) satisfying P2 - P. The notations (X © X © • • • )x and ~

Received by the editors June 17, 1991.

1991 Mathematics Subject Classification. Primary 47D30, 47B40, 17B60.
Key words and phrases. Associative, Lie and Jordan ideals, B(cq), B{lp), spectral operator of

scalar type, commutator.

The work of the second author was partially supported by an OTKA grant in Hungary.

©1993 American Mathematical Society

0002-9939/93 $1.00+ $.25 per page

673



674 K.-H. FORSTER AND B. NAGY

will have the same meaning as in [9]: in particular, X ~ Y means that there is

a topological isomorphism (i.e., a linear homeomorphism) between the Banach

spaces X and Y. The norms in different Banach spaces will be denoted by

| • | with or without subscripts. If A is an associative algebra and Ax, A2 are

subsets of A, then [Ax, A2] will denote the set of all sums of elements of the

form [qi , a2] where a, £ Aj for /' = 1, 2 . If J is an ideal in A, then let

7~ = {a £ A : [a, a] £ J for every a in A }.

We shall need the following

Lemma 1. Let either X = lp (1 < p < oo) or X = c0, and let A £ B(X).

Then A is the sum of two commutators, i.e., of operators of the form FG - GF

(F,G£B(X)).

Proof. Assume first that dim ker A = oo. Making use of [9, Lemma 2], we

can find an infinite-dimensional subspace Y of ker/I with the properties that

Y ~ X, Y is complemented in X, and if Y' is any complementary subspace

of Y in X then dim Y' = oo . Fix any such Y'. By [9, Theorem 1], Y' is then
topologically isomorphic to X . Applying [9, Proposition 3], we obtain that

X~Y'®Y~Y'®X~Y'®(XoX®-'-)x~(XeXe---)x.

Denote the last direct sum space by D. We see from the above that there is

a topological isomorphism J: X —> D such that J~x maps all but the first

component spaces of D into Y c ker.4. Let A+ = JAJ~X be the opera-

tor "corresponding to A" in B(D). Then A+ vanishes on all but the first

component spaces of D, hence A+ has the following infinite operator matrix

representation in (X © X © • • • )x (cf. Halmos [6, Problems 55 and 186]):

/A0   0   ...\

Ax    0
A+=     A2    0

V i   i     /
where Aj £ B(X) for j — 0, 1, ... , and the sequence IJ^Xol; 7 = 0, 1, ...}
belongs to X and has X-norm not greater than |^4+||xn| for any xo in X .

Consider the following infinite operator matrices acting in the space D =

(X®X®---)X:

/ 0 0 0 \                      /Ai -A0 0        0 ••• \
7 0 0 ■••                            A2 0 -AQ      0 ••■

P+ =      0 7 0 ,        Q+ =     A3 0 0 -A0 ■ ■ ■     .
0 0 7 A4 0 0        0

V... / \... /
For any x = (xq, xx, ...) £ D, the /th component of Q+x has X-norm not

greater than |^,+iXo| + Mo| |*i+i| > hence the 7>normof Q+x satisfies \Q+x\d<

l^+llxol-r-l^ollxlo < (M+I + MoI)I-k|d. Thus both operators P+ and Q+ belong
to B(D) and, as [6; Problem 186] shows, satisfy A+ = P+Q+ - Q+P+ . Since
A = J~XA+J, the operator A is also a commutator.

Now let A £ B(X) be arbitrary, and let K be a topological isomorphism

from X onto E = X © X.   Let A' = KAK~X .   Then A' e B(E) has the



LIE AND JORDAN IDEALS IN B(c0) AND B(lp) 675

operator matrix representation

,_ (Axx   An\_ (Axx   0\     (0   AX2\

\A2X    A22j     \A2X    0) + \Q   A22J-

The summands on the right-hand side are commutators, by the preceding para-

graph. Transforming all the relevant operators into B(X), we see that A is a

sum of two commutators in B(X).

Theorem 1. Let L be a linear manifold in B(X), where X is one of the spaces

Ip   (1 < p < oo) or Co- The following conditions are equivalent:

(1) L is a Lie ideal;
(2) U~XLU c L for every spectral operator of scalar type U in B(X), whose

spectrum is contained in the unit circle;

(3) N~XLN c L for every invertible spectral operator of scalar type N in

B(X).

Proof. (3) clearly implies (2). Assume now (2), let P be an idempotent in

B(X) and A £ L. The operator U = P + i(I - P) is then as required in

(2), U~x = P - i(I - P) is also of that type, and [P, A] = PA - AP =
(U~XAU - UAU~x)/2i £ L. We shall show that each operator T in B(X) is
the sum of a finite number of idempotents, which will imply (1).

Let D denote X © X. Then there is a topological isomorphism J from

X onto D. It is sufficient to show that T+ = JTJ~X £ B(D) is a sum of
idempotents P£ in B(D); then T will be the sum of the idempotents P^ =

J~XP£J in B(X). Let T+ be represented by the operator matrix (£| ^)

in D = X © X. By Lemma 1, the operator Axx + A22 - 87 is the sum of

two commutators, say B' and C, in B(X). Fixing these, let Tin £ B(X) be

arbitrary, and let

Cxx = Axx - Bxx,        B22 = B' + 47 - Bxx,        C22 = A22 - B22.

Then all these operators belong to B(X) and

M*' 4)+(c." cj-
Here the stars denote suitable operators in B(X), further Bxx + B22 - 47 = B'

and Cxx + C22 - 47 = C are commutators in B(X).

A completely algebraic part of the proof of Theorem 1 in Pearcy and Topping

[8] shows that any 2x2 operator matrix for which "trace" minus 47 is a

commutator can be written as the sum of four idempotents. Hence T+ is the

sum of eight idempotents and (1) follows.

Assume now (1), and let S be an involution, i.e., a square root of the identity

7 in B(X). For any A in L then we have S~XAS = A - ±[S\ [S,A]]£L.
Recalling that X ~ X © X ~ (X © X © • • • )x , the following statement can

essentially be proved as in Radjavi [10, Lemma 3] for the Hilbert space case:

If T = diag(7i, C) = (* °) in the direct sum X © X is invertible, then T is
the product of six involutions.

Let N be as in (3). Applying essentially the method of the proof of [6,

Problem 111], we can find an idempotent P commuting with N and such that

dimPX = dim(7 - P)X = oo . By [9, Theorem 1], then PX ~ X ~ (7 - P)X.
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Making use of the statement of the preceding paragraph, N is the product of

six involutions, hence (3) holds.

Theorem 2. Let X = c0 or X = lp (1 < p < oo). A subset of B(X) is a Jordan

ideal if and only if it is an associative ideal.

Proof. An associative ideal is evidently a Jordan ideal. Assume now that J is a

Jordan ideal, T £ J, and P is an idempotent in B(X) satisfying dim ker P =

dimimP = oo. Then PTP = 2(ToP)oP-ToP belongs to J. By [9, Theorem

1], both kerP and imP are topologically isomorphic to X, so we can find a

topological isomorphism Vx: ker P —► im P of these subspaces with the inverse

V~x :imP->kerP. Define the operators V and V in B(X) by

y = f Vx    on kerP, yl=( V~x    on imP,

i 0     on imP, " \ 0        on ker P.

Then we clearly have the following relations:

FF' = P,        V'V = I-P,        VP = 0,        PV = V,        PV' = 0.

Since To V £ J, we obtain as in the proof of [3, Theorem 3] that (VTP)oV' £

J, and hence that TP and PT belong to J.
Assume now that X is the direct sum F © Y of two closed subspaces and

F is finite dimensional. By [9, Theorem 1], Y is then topologically isomorphic

to X. Hence there are infinite-dimensional closed subspaces W and U of

Y such that Y = W © U. Denote by D(A, B) the idempotent D in B(X)
determined by imD = A and kerD = B. Since F is finite dimensional, the

linear manifolds F © W and F ®U are closed, and

D(F, Y) = D(F, W®U) = D(F®W, U) - D(W, F © U).

The right-hand side idempotents here satisfy dim ker D = dimimT) = oo. Ap-

plying the preceding paragraph, we obtain that PT and TP belong to J for

any idempotent P in B(X). By the proof of Theorem 1, each S in B(X) is

the sum of eight idempotents, hence J is an associative ideal.

A result of Murphy [7] together with Lemma 1 and the proof of Theorem 2

yield

Theorem 3. Let B denote either B(lp) (1 < p < oc) or B(cq) and, let L denote

a linear manifold in B. L is a Lie ideal in B if and only if there is an ideal I

/>7 B such that [B, I] C L C I~ .

Proof. The proof of Theorem 2 shows that the algebra B has a set E = {e,j;

7,7 = 1,2} of 2 x 2 matrix units (for this notion see, e.g., Faith [2; pp. 133-

134]): take any idempotent P in B satisfying dim ker P = dimimP = oc,

define V and V in B as in that proof, and let

E-(P       V   \c - \V   I -P )■

Lemma 1 shows that [B, B] = B. Hence [7, Theorem 5] gives the stated

equivalence.

Corollary. With the notation above B has no proper finite codimensional Lie

ideals.
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Proof. [7, Theorem 6] and Theorem 3 show that B has a proper finite-codimen-

sional Lie ideal if and only if B has a proper finite-codimensional ideal.

Gohberg, Markus, and Feldman [5] showed that the only proper closed nonzero
ideal in B is the ideal of compact operators, which is clearly not finite codi-

mensional.
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