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(Communicated by Louis J. Ratliff, Jr.)

Abstract. Let k be a field of characteristic p > 0 and A , R polynomial rings

in two indeterminates over k. It is shown that, if k[Rp] C A C R (strictly)

then there exist x, y e R such that R = k[x, y] and A = k[xp, y]. (The

case where k is algebraically closed was proved by Ganong in 1979.) Another

result is obtained in the situation where Rp   C A C R .

One aim of the paper is to prove the following

Theorem. Let k be a field of characteristic p > 0 and A, R polynomial rings

in two indeterminates over k. If k[Rp] c A c R (strictly) then there exist

x, y € R such that R = k[x, y] and A = k[xp, y].

The fact that the result holds when k is algebraically closed was proved by

Ganong in [4]; we will refer to that fact as Ganong's theorem, and will make

use of it in our proof. It was also known that Ganong's argument could prove

the result under the weaker assumption that k is a perfect field, but apparently

the general case was not known.

The method used in [4] (namely, the HN-expansions, see [5]) is not available
in the general case, because one has to deal with curves with a possibly non-

rational place at infinity. The main ingredient in our proof (besides Ganong's

theorem) is a result on pairs of polynomials in one indeterminate over an in-

tegral domain of positive characteristic (Proposition 1.2), to which the first
section is devoted. Section 2 gives two applications of (1.2), the second of

which being the proof of the above theorem. The other application (Proposi-

tion 2.3) is concerned with the more general "Frobenius sandwich" situation

where Rp" CACR.

We will need some basic facts about automorphisms of k[X, Y] and plane

curves with one place at infinity; these can be found in [1, 2] or [5].

1. Pairs of polynomials in one indeterminate

Throughout this section let S be an integral domain containing a field k,

let T ,TX, and T2 be indeterminates, let G be the group of k-automorphisms

of k[r,, T2], and let E be the set (S[T] x S[T])\(S x S). Given 6 e G and
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(x, y) € E we put 6(x, y) = (a(x, y), P(x, y)) e E, where a = 6~X(TX)

and /? = 0~X(T2). This defines a left-action of G on £, and we tacitly refer

to this action whenever we speak of an orbit. Note that (x, y), (x', y') e E

belong to the same orbit if and only if (x', y') = (a(x, y), fi(x, y)) for some

a, 0 € k[Tx, T2] such that k[a, y?] = k[Tx, T2].
Given x £ S[T], the formal derivative dx/dT will be denoted x ; let degx

be the T-degree of x and, in particular, let degO = 0. The bidegree of (x, y) e

E is bideg(x, y) = (degx, degy). A pair (m,n) of nonnegative integers is

nonprincipal if either mn = 0, or m \ n and n \ m; otherwise (m, n) is
principal.

Lemma 1.1. Suppose (x, y), (x', y') e E belong to the same orbit, have non-

principal bidegrees, and satisfy degx < degy and degx' < degy'. If a, /? e

kf^i, T2] are such that k[a, /?] = k[Tx, T2] and (x', y') - (a(x, y), P(x, y)),
then a — aTx + b and /? — cT2 + f(Tx) for some a, c ek* = k\{0}, ft ek,
andfek[Tx] such that deg/degx < degy. Consequently,

x' = ax + b,        y' = cy + f(x),        bideg(x, y) = bideg(x', y').

Proof. This can be found, in one form or another, in the literature (see [2] for

instance). At any rate, it is very well known if k = S; we reduce to that case

by noting that a, fi € k[Tx , T2] also satisfy K[a, /?] = K[TX , T2], where K
is the field of fractions of S.   □

Call an orbit cf monic if the leading coefficient of x is in k* whenever

(x, y) e cf and degx > 0 (and note that (x, y) € cf implies (y, x) € cf).

Clearly, every monic orbit contains an element (x, y) with nonprincipal bide-

gree.

Proposition 1.2. Assume that k has characteristic p > 0, let So be a k-subalge-
bra of S that contains k[Sp], and let cf be a monic orbit that contains an

element (u, v) such that u 6 So[Tp].
(1) There exists (u, v) ecf such that u e So[Tp] and whose bidegree (m, n)

satisfies either (a) (m, n) is nonprincipal, or (b) m > n > 0, n\m, and pn\m .

(2) Suppose that cf £ S[TP] x S[T»], that (x, y) e cf has nonprincipal

bidegree, and that degx < degy. Then either x e Sq[Tp] , or y + f(x) e So[Tp]

for some f e k[Tx] such that deg/degx < degx + degy .

Remark. From the special case " 5 = k " of this proposition, one may deduce

(2.2) of [3] and hence the main theorem of that paper. In the applications con-

tained in the next section, however, S is a polynomial ring in one indeterminate

over k.

Proof. For the first assertion, let (u,v) & cf be such that u e So[Tp], let

(m,n) — bideg(w, v), and assume that neither of conditions (a), (b) holds.

Then mn ^ 0 and either m\n or pn\m. Define («', v') as follows.

If m\n, let d = n/m and note that there exists X 6 k* such that

deg(w - Xud) < degw ; define (u' ,v') = (u,v- Xud).

If pn\m, let d = m/(pn) and note that there exists X € k* such that

deg(w - Xvdp) < degw; define (u', v') = (u - Xvdp, v).

So in each case we obtain (u', v') e cf such that u' e S0[TP] and degw' +

degv' < degw + degv . Clearly, this proves the first assertion.
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For the second part, choose (u,v) e cf such that u e So[Tp] and whose

bidegree (m, n) satisfies one of the conditions (a), (b) of the first part.

Suppose (m, n) is nonprincipal. If m < n then, by (1.1), there exist a ek*

and b e k such that x = au + b, hence x e So[Tp]. If m > n then u =

ay + f(x) for some aek* and / e k[Tx], as in (1.1), so we are done again.

So we may assume that m > n > 0, n|An, and pn \ m. Let d = m/n;

then d > 1 and p \ d. Let g e k[Tx] be a polynomial of degree d such

that, if we define w = u - g(v), then either degw = 0 or degv \ degw.

We claim that degw > degv , which implies that bideg(v , w) is nonprincipal.

To see that, begin with the observation that v £ S[TP], since u e So[Tp] and

cf <£ S[Tp] xS[Tp]. Hence v ^ 0, ii) = -g'(v)v , and the derivative g' e k[Tx]

has degree d - 1. It follows that

degw > degw > degg'(v) = (d - l)degw,

and, in particular, degw > degw , as claimed.

By (1.1) we obtain bideg(v, w) - bideg(x, y), y = cw + h(v), and v =

ax + b, for some a, c ek*, b ek, and h e k[Tx]. Setting

f(Tx) = cg(aTx +b)- h(aTx + b) e k[Tx]

gives y + f(x) = cue So[Tp], and obviously degf < max(degg, degh). Now

(1.1) also says that degndegx < degy, and on the other hand, the inequality

(d - l)degi> < degw is equivalent to deggdegx < degx + degy .   D

2. FROBENIUS SANDWICHES

In this section, k denotes a field of characteristic p > 0 and R - k[21 (for

a k-algebra A , the notation A = k^"] means that A is a polynomial ring in n

indeterminates over k).

A coordinate system of R is a pair (X, Y) e RxR such that R = k[X, Y];

the set of all coordinate systems of R is denoted T(R). A variable of R is an

element u of R such that R - k[u, v] for some v . If (A", y) € T(R) has

been chosen then, given F e R, degy F and ley F denote, respectively, the

degree and leading coefficient of F , where F is regarded as a polynomial in Y

with coefficients in k[X] (and similarly for deg^- F and lc* F ); we also write

Fx and FY for the partial derivatives 8F/dX and dF/dY.
By a subalgebra of R we mean a subring that contains k. Let 1(7?) be the

set of subalgebras A = k[2l of R such that A D Rp" for some n > 0.

Lemma 2.1. Suppose u e R is a variable of some element of Z(/?). Then, for

each (X, Y) e T(R), either degy u = 0 or ley u e k*.

Proof. Suppose degy u > 0. There exist v e R and an integer n > 0 such

that Xp", Yp" e k[u, v] C k[X, Y]. Let k be the algebraic closure of k, and
—    — _*

let «o be the irreducible element of R — k[X, Y] such that u - upQ   for some

integer k > 0. Then degy uq > 0 and uq is a variable of some element of £(/?)

(namely, k[un , v] e I(/?) since Xp", Yp" e k[u, v] C k[u, v] C k[w0, v]).

In other words, we may assume that k = k and that u e R is irreducible.

Since the above inclusions imply that (R/uR)p" C k'1' C R/uR , i.e., that R/uR
is purely inseparable over k[1], we conclude that u has one place at infinity

(rational, since k = k), and the result follows (see [5, (5.2.1)] for instance).   □
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2.2. Given A e £(/?) and (X, Y) e Y(R), we may put ourselves in the context

of Proposition 1.2 by letting S = k[X], So = k[Xp], T = Y, and cf = T(A).
Observe that S[T] = R, S0[TP] = k[X", Yp] = k[Rp] and that the orbit cf
is monic by the above lemma. Moreover, the condition cf </. S[TP] x S[TP] is

equivalent to A </L k[X, Yp]. We will use the sentence "apply (1.2) to A , R,

and (X, Y)" to indicate that this viewpoint is adopted and that we are making

use of (1.2).

Proposition 2.3. Let A e E(/?), let k be the algebraic closure ofk, A = k <g>k A

and R = k ®k JR. Then A e £(/?) and the following are equivalent:

(1) some variable of A is in k[Rp],

(2) some variable of A is in ic°

_    _i2i _       _
Proof.  R = k     and A e L(R) are easily verified, and (1) clearly implies (2).

Assume (2) holds. Since (1) holds trivially if A C k[Rp], let us assume that

A <£ k[Rp]. So we may choose (X, Y) e Y(R) such that A<£k[X,Y"].
We claim that it suffices to find a variable w of A such that wY — 0. Indeed,

let t e A be such that (w, t) e T(A). From A ^ R (because (2) holds) and

A e 2Z(R), one deduces the nullity of the Jacobian: 0 = Wxty - wYtx = wxty ■

Since A s% k[X, Yp], it follows that tY ¥" 0 and, consequently, wx = 0, i.e.,
w e k[Rp].

Choose (x, y) e T(A) such that (degyX, degyy) is nonprincipal and degy x

< degy y ; by the previous paragraph, we may assume that Xy ^ 0. We will

now apply the second part of (1.2) to A, R, and (X, Y) e T(R) (see (2.2));
note that the " k " of (1.2) is k here, A <£ k[X, Yp] implies cf £ S[TP] x S[TP]

and, since (2) holds, some (u, v) ecf satisfies u e So[Tp] = ~R" . We conclude

that y + f(x) e ic° for some / e k[Tx], since the other case (x e 7c°) cannot
happen here. Clearly, / may be chosen so that p \ i whenever T[ occurs in
/ with a nonzero coefficient.

We claim that / e k[Tx]. Begin by observing that

0=-£f(y + f(x)) = yY + f'(x)xY

and xy 7^ 0 imply that f'(x) e qtRnR = R, where qtR is the field of fractions
of R_. So the derivative /' is in k[Tx], in view of the following easy fact: If

g e k[Tx] satisfies g(a) e R for some a e R\k then g e k[Tx]. Because of

our choice of /, we thus have / e k[Tx], as claimed. Consequently, y + f(x)
is a variable of A and belongs to k[Rp].   □

Proof of the theorem. If k, A , and R are defined as in the above proposition,

then K c A c R (strictly) so, by Ganong's theorem, some variable of A is in

ic" . Thus by (2.3) some variable of A is in k[Rp].
Choose (X, Y) e T(R) and apply the first part of (1.2) to A, R, and

(X, Y). By the previous paragraph, cf contains an element (u, v) such that

u e So[Tp] - k[Rp] and, by (1.2), we may arrange that the pair (m, n) =

(degy u, degy v) satisfies one of the following:

(a) (m, n) is nonprincipal; or

(b) m > n > 0, n\m , and pn\m .
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Note that A = k[u, v] and u e R   imply that R = k[uxlp , v], thus n\(m/p)
_[2]

or (m/p)\n , by the Automorphism Theorem for k    . Since these divisibility

conditions are incompatible with (b), (m, n) must be nonprincipal.

If mn = 0 then some variable of A is in k[X] and the desired conclusion

easily follows. So let us assume that mn/0.

Since n \ m, we have n { (m/p), hence (m/p)\n. Consider the integer

d = n/(m/p); then d > 1 and p\d. We may certainly assume that ley v = 1;

thus the approximate root p = Appy(v) is defined and belongs to R since v

does (see [5, (1.7)]). On the other hand, the conditions

k[X, Y] = k[uxlp, v]   and    ,degrV..   =d>\
1,1       l J degYux/p

(together with well-known properties of coordinate systems) imply that R =

k[p, v]. Thus
R = k[p,v]r\R = k[p,v],

and it easily follows that A — k[pp, v].   D
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