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(Communicated by Maurice Auslander)

Abstract. Consider 1 —► 5 —> E —► G —> 1 , where G is a finite p-group

generated by g,, 1 < i < d, and E a free product of cyclic groups (gt),

1 < i < d. If d is the minimum number of generators for G, then we

prove that the largest elementary abelian p-quotient S/S'SP , regarded as an

FpG-module via conjugation in E , is nonprojective and indecomposable.

The author [5] has introduced and studied relative relation modules. Con-

sider

1 ̂ S-+E^G^ 1,

where G is a finite group generated by g,■, I < i < d, E the free product of

any cyclic groups (et), 1 < i < d, and e,y/ = g,. Let p be a (fixed) prime.

The largest abelian /^-quotient S = S/S'SP, regarded as an Fp (/-module via

conjugation in E, is called the relative relation module (modulo p) of G

determined by y/ . If each (e{) is infinite, S is called a relation module of G.

Gaschiitz [1], Gruenberg [2, 3], and others have studied relation modules. S is

called minimal if G cannot be generated by fewer than d elements. As a direct

consequence of [3, Theorem (2.9)], minimal relation modules of p-groups are

nonprojective and indecomposable. The aim of this paper is to prove

Theorem 1. If \(ei)\ = ra,|(g,)|, 1 < m, < co, and p -f- m,, I < i < d,

then the minimal relative relation module Sofa p-group is nonprojective and
indecomposable.

For the rest of the paper, let G be a (finite) p-group and regard all modules

as (right) F^G-modules. It is a well-known fact that the Frattini subgroup of

G coincides with G'GP, and hence the minimal number of generators of G

and G/G'GP is the same. Moreover, ¥PG and all its submodules are indecom-

posable, and WPG has only one irreducible module, namely, ¥p. A minimal

generating set for a module is an F^G-generating set whose cardinality is less

than or equal to any other generating set for the module. For a module M, de-

fine [M, G] to be the span of {m(g - l)/m £M, g £ G} , so that M/[M, G]
is the largest trivial quotient of M. We set [M, G, G] = [[M, G],G]. The
following (well-known) result is not difficult to prove.
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Lemma 2. Let 77 be any subgroup of G and M a module that affords the

natural permutation representation of G on the set ofi (right) cosets ofi 77. Then

[M, G]/[M, (?,(?]== G/HG'G".

Corollary 3. Let d be the minimum number of generators for G and M a

module generated by r elements. Then

(a) dim(M/[M,G])<r,
(b) dim([Af, G]/[M, G, G]) < dr, and
(c) dim([Af, G]/[M, G, G]) < d dim M/[M, G].

Proof, (a) follows from the fact that the result is true for free modules of rank

r, (b) follows by substituting 77 = 1 in Lemma 2, and (c) follows from (b)

by observing that the minimal number of generators for M is the same as the

dimension of M/[M, G].

Proof of Theorem 1. From [5, (2.13)] we obtain the following ¥pG-exact se-

quence:

(1) O^S ^L->M^0

and

d

(2) O-M-»0[/jAr^O,
(=1

where L is a free module of rank d - 1 . Since S is a homomorphic image

of the corresponding minimal relation module that is indecomposable and non-

projective, S has no nonzero projective direct summand. It follows that (1) is

a projective cover of Af. By a theorem of Heller [4] the indecomposability of

S will follow if we prove

Theorem.  M is indecomposable.

Proof. To prove this we use the following exact sequence (cf. [5, (2.13)]):

d

i=\

where £/, is the module that affords the natural permutation representation

of G on the cosets (gj) and u,fi = 1, I < i < d, where u, is an ¥qG-

generator of [/,. By definition of fi, the kernel M of fi is generated

by all u,■■ — Ud, 1 < i < d - 1, and hence dimAf/[Af, G] < d - 1 . But
(M + [U, G])/[U, G] has dimension d - 1 and is a surjective image of

M/[M,G].   Hence  [M, G] = [U, G] D M, whence  [M, G] = [U, G] =

(&1=\[Ui> G], and also dimM/[Af, G] = d - 1. Now suppose that M =
M' e M" , and let r = dim(M'/[M', G]). Since [M, G] = [M', G] © [M", G]

— 0/=i[^/> G] with [U,, G] indecomposable, by the Krull-Schmidth theorem,
[M', G] is isomorphic to the direct sum of s, say, copies of [(/,, G], and

[M", G] is isomorphic to the direct sum of r-s copies of [U,, G]. By Lemma

2, dim([Ui, G]/[U, ,G,G]) = d-l and so

dim([M', G]/[M', G, G]) = s(d - 1)
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and

dim([M", G]/[M" ,G,G]) = (d- s)(d - 1).

By Corollary 3(b), however, s(d -l)<dr and (d - s)(d - 1) < d(d - 1 - r).
Since these two inequalities sum to an equality, both of them must be equalities.

But then d-1 divides r, which is only possible when either r = 0 or r = d-l.

Thus either M' - 0 or M" = 0, which completes the proof.
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