
proceedings of the
american mathematical society
Volume 118, Number 1, May 1993

AN UNCOUNTABLE COLLECTION
OF MUTUALLY INCOMPARABLE CHAINABLE CONTINUA

MARWAN M. AWARTANI

(Communicated by James E. West)

Abstract. We exhibit the existence of continuum many compactifications of

the ray with the arc as remainder, no one of which maps onto any other. We

also obtain continuum many pathwise connected circularly chainable continua

no one of which maps onto any other. The involved constructions and proofs

are combinatorial in nature.

1. Introduction

In [8] Rogers raised the question: "Does there exist an uncountable collection

of chainable continua, no member of which maps onto any other?" In [3]

Bellamy gave an affirmative answer to this question. However each member of

Bellamy's collection consisted of infinitely many path components. The purpose

of this paper is to prove the existence of the desired collection within the family

of compactifications of the the ray with the arc as remainder, whose members

consist of exactly two path components. This also generalizes the main result

in [1]. For related work see [2, 6, 7].
As a corollary, we obtain the known result [3, 5, 9] that there exists an un-

countable collection of circularly chainable continua, no member of which maps

onto any other. Unlike the continua in [3, 5, 9], which consist of infinitely many

path components, each member of this collection is pathwise connected.

First we define a partial order on the class of all sequences of zeroes and

ones and prove that with respect to the given partial order, this class contains

uncountably many mutually incomparable elements. Then we associate with

each sequence of zeroes and ones a compactification of the ray with the arc as

remainder. Finally we prove that if a surjective map exists between a pair of

such compactifications then the underlying sequences are comparable.
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2. Preliminary results

TY denotes the set of natural numbers.

2.1. Definition. Let 2N denote the set of all sequences of zeroes and ones, and

let {af}, {bj} be two elements in 2N . Then

(i)   {at} is said to vertically dominate {bj} if a, > />, eventually.

(ii)   {a,} is said to dominate {/>,} if there exists an integer jo such that

ai > bj+j0 eventually,

(iii)   {a,} and {bj} are called incomparable if neither of them dominates

the other.

The following lemma is easy to verify.

2.2. Lemma. Let {a,},{/3,} be two elements in 2N . If {tf/J^i is a tail of the

sequence of zeroes in {aj}, and if for some integer j0, /3!>+7o is eventually zero,

then {aj} dominates {bj}.

2.3. Lemma. 2^ contains continuum many elements no one of which vertically

dominates any other.

Proof. Let P(N) denote the power set of N. For each a = {a,} £ 2N define

F(a) £ P(N) as follows: i £ F(a) iff a,■ = 1. F is clearly a bijection. More-

over, if F(a) and F(fi) are infinite and almost disjoint (i.e., 77(a) n 77(/?) is

finite) then a and /? are vertically incomparable. The result now follows since

it is well known that P(N) contains a collection of cardinality c consisting of
mutually almost disjoint infinite subsets of N.

2.4. Lemma. 2N contains continuum many elements none of which is eventu-

ally constant and no one of which dominates any other.

Proof. For each a = {aj} £ 2N define a sequence {a%} as follows:

a° = 0,      n^VorV + l;

aan = l,      n = V;

aan=cxj,    n = V + l.

It is obvious that if {aff} dominates {a„} then a vertically dominates fi .

The result now follows from Lemma 2.3.

3. Constructing the uncountable collection

3.1. Notation. Throughout this paper, if /: (0, 1] -* [0, 1] is a continuous

function, then the points of the graph of / are ordered by their first coordinate.

Moreover if a and b are two points in the graph, then (a, b), [a, b] denote

respectively the open and closed portion of the graph between a and b . If A

is a subarc of the graph, then d(A) denotes the length of A measured along

the graph. Ylx and FI2 denote the standard projections on the first and second

coordinates respectively. All maps are assumed to be continuous.

3.2. Construction. With each a = {a,} € 2N , we associate a compactification

Ea of the ray Ja with the arc Ia as remainder. It suffices to describe Ja .

(i) Ja is the graph of a piecewise linear function from (0, 1] to [0, 1].
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(ii) The point (1, 1/2) £ Ja.
(iii) Let ma and Ma denote respectively the set of minima and the set of

maxima of Ja and let Va = ma U Ma .

(a) If a, = 0 then [a,, />,] n Va has the following properties: (1) \[a,■■, bi] n

Ma\ = 2/ and \[at, bt] n ma\ = 2/ - 1. (2) If {MtJ : 1 < j < 2/} is an
enumeration from right to left of the elements of the set [a,, bj] n Ma then

n2(Mi,2i) = 1 and n2(Mjj) = 7t2(Mi>2i-j) = (; + 2)/(; + 3) V;, l<j<i. (3)

n2([aj, bi]f)ma)= 1/2.
(b) If a, = 1 then [a,-, 73,] n f^ has the following properties: (1) |[a,-, />,] n

Af„| = 2/ + 1 and \[at, />,] n wQ| = 2/. (2) If {MtJ: 1 < j < 2i + 1} is an
enumeration from right to left of the elements of the set [a,, bi] n Ma then

w2(M-,2i+i) = 1 and 7r2(Af,-j) = W2(iW/>2l+i-/) = (j + 2)/(/ + 3) V;, 1 < ; < /' •
(3) If {irijj: 1 < j < 2i} is an enumeration from right to left of the elements

of the set [a,, bi] n ma then n2(mtj) = 2/3 for 7 = i and 1/2 for ;' ^ ;'.
(c) For each i £ N, [/>,, a,] n Va has the following properties: (1) |[/3,, a,-] n

Ma\ = 27-1 and |[/3,-, <z;] n ma\ = 2/. (2) n2([b,■, a,-] n Afa) = 1/2. (3)
If {mjj: I < j < 2i} is an enumeration from right to left of the elements

of the set [b,■, aj] n ma then n2(mt 2i) = 0 and 7r2(777, j) = 772(w, 21-j) —

l-U + 2)/(j + 3)\/j,l<j<i.

3.3. Notation. Unless mentioned otherwise, the following notations are used

for the above-constructed compactification Ea .

(i) Let aa,bp, ca denote respectively the points (0, 0), (0, 1/2), and (0,1)

in Ia.

(ii) For each i £ N let K" and Lf denote the arcs [a,, bj] and [b,, ai+x]

respectively.

(iii) For each 1 e N let u" denote the arc in Ja joining the last element of

L" D ma with the first element of Kf+X n Ma . Similarly, let wf denote the arc

in /„ joining the last element of Kf n Ma with the first element of Lf P\ma .

The following lemma is easy to verify.

3.4. Lemma. For a compactification Ea the following hold:

(i) If t £ (aa, ca) and t' £ Ia then there exist sequences {7,} and {t'j} in Ja

converging to t and t' respectively such that {d[t,■■, t'X} is bounded away from

infinity.
(ii) Let {t,} and {t'j} be two sequences in Ja converging to aa and ca

respectively; then lim d[t,\, 7j] = 00.

(iii) For each i £ N let pt £ Lf ; then lim d[pi, pl+x] - 00.
(iv) Let {pi} and {qi} be two sequences in Ja both converging to aa. If

{d[pj, qj]} is bounded away from zero then [aa, ba] C lim[p,, qi].

(v) Let {Ai} be a sequence of arcs in Ja such that At n wj. ^ 0 eventually.

If lim Aj D [aa, ba] then lim d(Ai) = 00.

(vi) Let p £ uaki and q £ iu£+1, then [p, q] n ma n (y = 2/3) = 0 iffak. = 0.

4. The main results

4.1. Lemma. Let h: Ea -> Ep be a surjective map, and let A be a closed arc

in Ja. If B is a closed arc in h(A) then there exists a closed arc in A whose
image is B.
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Proof. The result follows directly since the map h\A: A —> h(A) is simply a
map between closed intervals.

4.2. Lemma. Let h: Ea -* Ep be a surjective map, and let {Aj} be a sequence

of arcs in Ja such that lim sup Aj C Ia. The following hold.

(i) If {d(h(Aj))} is bounded away from zero then {d(At)} is bounded away

from zero.

(ii) If {d(Ai)} is bounded away from infinity then {d(h(At))} is bounded
away from infinity.

Proof, (i) We may assume without loss of generality that {At} is a convergent

sequence. Since {d(h(A,))} is bounded away from zero, each h(Ai) contains

a pair of points Pj , qj such that limp, ^ limg,. Hence Aj contains a pair of

points p'i, ql such that lim p\ / limg-, which implies that {d(A,)} is bounded

away from zero.

(ii) Suppose that lim d(h(At)) = oo. Then for each i £ N, h(At) con-
tains a collection {Bij: 1 < j < i} of disjoint closed subarcs such that

{d(Bjj): (i, j) £ N x {1, 2, ... , i}} is bounded away from zero. For each

i £ N and each j, I <j < i, let Ajj be a subarc of Aj such that h(Atj) =
Bij. This is possible by Lemma 4.1. It follows from part (i) that {d(Ajj):
(i, j) £ N x{l, ... , i)} is bounded away from zero, implying that lim d(Af) =

oo.

4.3. Lemma. Let h: £a —► Ep be a surjective map. Then the following hold.

(i)   h~x{ap,cp} = {aa,ca}.

(ii) If h(aa) = ap ,  then h[aa, ba] = [ap , bp] and h[ba , ca] = [bp, cp].

(iii) If h(aa) = cp, then h[aa, bp] = [cfi , bp] and h[ba, ca] = [bp , ap].
(iv)    h(ba) = bp.

Proof, (i) It suffices to prove that (aa, ca) nh~x(cp) - 0 = (aa, ca) C\h~x(ap).

Suppose that (aa, ca)C\h~x(ap) / 0 , and let t' £ [aa, ca], t £ (aa , ca), be cho-

sen so that h(t') = cp and h(t) = ap . By Lemma 3.4(i) we can find sequences

{7,} and {t'^ in Ja such that lim 7, = 7 and lim t\ = t' where {d[tx■■, t'X} is

bounded away from infinity. Since lim/?(7,) = ap and limh(t'i) — cp, it fol-

lows from Lemma 3.4(h) that limd[h(tj), h(t'i)] = oo . This contradicts Lemma

4.2(H). It can be similarly shown that h~x(cp) n (aa , ca) = 0 .

(ii) We only prove that h[ba, ca] = [bp , Cp] since the proof that h[aa, ba] =

[ap,bp] is similar and thus omitted. Since h(aa) = ap, (i) implies that

h~l(cp) = ca ■ Suppose that there exists t £ (ba,ca) such that h(t) < bp.

Let T denote the sequence Ja n (y = t). Two cases arise:

Case (a). There exist two subsequences (pi) and (qi) of T such that for

each i £ N:   (1) /?, and <7, are adjacent in T, (2) {pt, qj} c KJ., and (3)

h(pi) £ L% and h(qi) £ L^ with r, ^ ki. It follows from Lemma 3.4(iii)

that lim d[h(pt), h(qj)] = oo and consequently that lim(n[/?,, qi]) = oo. This

contradicts Lemma 4.2(ii) since {d[p,, qi]} is bounded away from infinity.

Case (b). h(Kf n T) C Lph V/ > j0 . Then there exists a subsequence {A?}°f,

such that h(K° r\T) c L^ where j'/ f Jk whenever / / k . For each i £ N let

/?;,, qTi be the first and last points respectively of k". n T. Since L?C\Lji+x - 0 ,
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it follows that h[qn , pn+x] D Kf for some /, £ N, which in turn implies that

h(lim[qn, pn+x]) D limKf. That is, cp £ h[aa, t] with t < ca, contradicting

our assumption that h~x(cp) = ca . The proof of (iii) is similar and thus omitted

and the proof of (iv) follows directly from (ii) and (iii) above.

4.4. Lemma. Let h: Ea -> Ep be a surjective map. If neither a nor /? is

eventually constant then the following hold.

(i)  h(aa) = ap ; h(ca) = cp ; h[aa, ba] = [afi , bp]; h[ba, ca] = [bp , cp].

(ii) If {Ai} is a sequence of arcs in Ja such that lim Aj = [ba, ca] and

Aj n ma n (y = 2/3) = 0, V* £ N, then h(At) nmpn(y = 2/3) = 0
eventually.

Proof, (i) By Lemma 4.3(i), it suffices to prove that h(aa) = ap . Suppose that

h(aa) = cp. It follows from Construction 3.2 that there exist sequences {p,}

and {qj} in Jp such that limp, = lim<7, = cp, lim[p,, <?,] = [2/3, Cp], and
{d[Pi, qj]} is bounded away from zero. By Lemma 4.1 we can find a sequence

{Bj} of arcs in Ja such that h(Bt) = [p,, qi]. Since {d[p,■, qi]} is bounded

away from zero, it follows from Lemma 4.2(i) that {d(Bi)} is bounded away

from zero. Choose p, and qi in 5, such that h(pj) = pt and /?(<?,) = qj. Since

h~x(cp) - aa, it follows that limp, = lim^, = aa. We may assume without

loss of generality that {5,} is a convergent sequence. Hence by Lemma 3.4(iv),

[aa, ba] C lim5,. Since lim/?(#,) = [2/3, cp], it follows that h[aa, ba] D

[2/3, cp], contradicting Lemma 4.3(iv). Hence h(ca) = cp and h(aa) = ap .

The proof of (ii) is similar and thus omitted.

4.5. Lemma. Let h: Ea —> Ep be a surjective map, and let {p,} and {qj} be

sequences of points in Ja such that for each i £ N, pt e uf and qj e wf. If
lim qi and neither a nor ft is eventually constant, then there exists an integer

jo such that eventually h(pi) e uf+j   and h(qi) £ wf+J .

Proof. Since h(ba) - bp , it follows that limn(p,) = limh(qi) - bp . We break
the proof into four steps:

Step 1. h(pj) £ \JjeN u] eventually. Suppose not, then three cases arise:

Case (i).  {d[h(pi), MjX) converges to zero for some subsequences {Mji}™1

of Mp . Then it can be shown using the uniform continuity of h that 3d >

0, 9 h[ba, ba + S] c [ap, bp] contradicting Lemma 4.4(i).

Case (ii).  {d[h(pj, mj.]} converges to zero for some subsequence {mj}} of

mp .   Using a reasoning similar to the above, it can be shown that 33 > 0,

3 h[ba , ba - d] c [bp , cp] again contradicting Lemma 4.4(i).

Case (iii).    h(pt) £ \Jj€Nw?  eventually.   Let  m* = uf   n   ma.   Since

lim[777*, pj] = [aa, ba], Lemma 4.4 implies that

lim h[m*, pi] = [ap , bp].

Since h[m*, pi] n (\Jj€NWj) ^ 0 eventually, it follows from Lemma 3.4(v)

that limd(h[m*, p,]) = oo. This contradicts Lemma 4.2(h) since {d[m*, p,]}

is bounded away from infinity. Hence the only remaining possibility is for h(pi)

to be eventually in (jj€N u*j .

Step 2.  h(qi) £ \Jj€N wf eventually. The proof is similar to that in Step 1

and thus omitted.
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Step 3. If h(pi) £ U1*. eventually, then h(qj) £ wf eventually. Suppose not,

then h(qi) £ wf. where kj ^ jt infinitely often. Then it can be deduced that

h[a,a , ba] n (bp, Cp) ̂  0 contradicting Lemma 4.4(i).

Step 4. We finally prove that if h(pi) £ uf. eventually then 7/+i = 7/ +
1. Suppose that ji+x ^ jj + 1 infinitely often; then it can be deduced that

h[ba, ca] n (ap , bp) ^ 0 contradicting Lemma 4.4(i).

It follows from the above that there exists an integer 70 such that h(pt) £

uf+j   and h(qi) £ wf+lo eventually. This completes the proof of the lemma.

4.6. Theorem. Let h: Ea —> Ep be a surjective map. If neither a nor fi is

eventually constant then a dominates /?.

Proof. For each i £ N choose p, e wf and <?, 6 wf such that limp, =

lim#, = ba. By Lemma 4.5, there exists an integer jo such that h(pt) £ u?+j

and h(qf) £ wf+J eventually. Let {ak.} be a tail of the sequence of all zeros in

a. By Lemma 2.2, it suffices to prove that &,.+_;„ = 0 eventually. Since aki = 0,

it follows from Lemma 3.4(vi) that [pk., qki] n ma n (y = 2/3) = 0 . By Lemma

4.4(H), h[pki, qkj] n mp n (y = 2/3) = 0 eventually and hence [h(pki), h(qk.)] n

(y = 2/3) = 0 eventually. Since h(p) £ m£ . and h(qk.) £ wf+j , we conclude

by Lemma 3.4(vi) that Bk.+jo = 0 evenually, which completes the proof of the

theorem.

Combining Lemma 2.4 and Theorem 4.6, we readily obtain the main result.

4.7. Theorem. There exists an uncountable collection of cardinality c of com-

pactifications of the ray with the arc as remainder, no member of which maps

onto any other.

4.8. Corollary. There exists an uncountable collection of planar pathwise con-
nected circularly chainable continua, no member of which maps onto any other.

Proof. For each a £ 2N let Ea be the associated compactification of the ray

described in Construction 3.2. From Ea we obtain a circularly chainable con-

tinuum E'a by simply trying the first point of Ja with the point aa £ Ia. E'a

is clearly pathwise connected and planar. Notice that E'a - (aa, ca] is a ray

densely embedded in Ea. If h: E'a —* E'n is a surjective map then it is easy

to verify that there exists a subray J'a of E'a - (aa, ca] having the following

properties:

(i) If Ja denotes the closure of J'a in E'a then J a- J'a = Ia.

(ii)   h(Jf) = Jp_
Consequently h\J/,: J'a -» Jp is a surjective map for which the preceding

results in 4.1-4.6 still hold from Theorem 2.4.
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