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HITTING TIME BOUNDS FOR BROWNIAN MOTION
ON A FRACTAL
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(Communicated by Lawrence F. Gray)

Abstract. We calculate a bound on hitting times for Brownian motion defined

on any nested fractal. We apply this bound to show that any such process is

point recurrent. We then show that any diffusion on a nested fractal must

have a transition density with respect to Hausdorff measure on the underlying

fractal. We also prove that any Brownian motion on a nested fractal has a

jointly continuous local time with a simple modulus of space-time continuity.

0. Introduction

Recently the study of diffusion processes has been extended to inherently

"rough" or nondifferentiable state spaces. Several authors have constructed dif-

fusions on fractals, particularly, on the so-called "nested fractals." Diffusions

have been constructed on the Sierpinski gasket by Goldstein [5], Kusuoka [8],

and Barlow and Perkins [2], and on the Vicsek snowflake by Krebs [7].

In his 1990 monograph, Lindstrom observed that nested fractals share com-

mon properties that permit a general construction of a diffusion on any fractal

set satisfying a set of four axioms. (See Lindstrom [9] for further details.) This

raises the natural question of what properties are common to every diffusion on

any nested fractal.
The fundamental fact about nested fractals is that they can be approximated

to an arbitrary degree of accuracy by regular graphs. This makes it possible

to approximate a diffusion on a nested fractal by a random walk on a reason-

ably simple graph. Properties of the diffusion can then be deduced from the

properties of the approximating random walks.
In this work, we use random walks on the graphs approximating a nested

fractal to estimate moments of the hitting times of the diffusion on the nested

fractal. This gives us an estimate of the modulus of continuity of the diffusion.

We then apply this simple bound to answer questions about the behavior of

the diffusion. In particular, we can show that any diffusion on a nested fractal

is point recurrent, that any such diffusion has a jointly continuous local time

with a space-time modulus of continuity that we can estimate, and that any
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such diffusion has a transition density with respect to Hausdorff measure on the
underlying fractal.

A brief overview of the terminology of diffusions on nested fractals is given

in §1. In §2, we estimate the mean of time required for the diffusion to hit an

arbitrary point, starting from an arbitrary point. In §3, we apply the bound to

solve several problems posed by Lindstrom in [9].

1. Brownian motion on nested fractals

In this section we present a brief review of nested fractals, as well as the the-

orems establishing the existence of Brownian motion on such sets. This expo-

sition follows the comprehensive treatment of these ideas given in [9, Chapters

I-V], which also provides some examples to motivate the ideas.

Let {<px, ... , cp/j} be a set of t>-similitudes in R" . <pj(x) — v~x • UjX + bj

where UjiR" —► R" is an orthogonal transformation and bj is a fixed vector.

For bounded subsets A of R", define Jf(A) = (J? <Pi(A). It is well known
that there exists a unique compact set T such that T = Jt(T). (See, e.g.,

Hutchinson [6].)
It is well known that if <j>j is a v -similitude with v > 1 then cpj has a unique

fixed point Xj in R" . Let F° be the set of fixed points of {<px, ... , d>f}. Say
that a fixed point x is essential if there exist / / j such that cpj(x) = cpj(x).

Let F denote the set of essential fixed points of the system {<f>x, ... , tr^} . It

is not hard to see that F cT.
For any A c R" , let ^(°) = A and let A™ = Jt(A^-x>), n = 1, 2, ... .

Call F(w) the set of n-points of T. If </>,,, ... , cpin is any sequence of transfor-

mations in {4>x, ... , dj^} , call F,-,.,-„ = 4>u ° ''" ° QuiF) an n-cell. Say that
r,-,.,„ = (pjx o ■ ■ ■ o 4>jn(t) is the associated n-complex.

After Lindstrom [9], we say that T is a nested fractal if it satisfies the fol-
lowing four conditions:

(i) Any two 1-cells C and C are connected by a sequence of 1-cells.

(ii) For x, y £ F, let lx>y be the line midway between x and y and let

RXyy be reflection about lx,y. Then Rx<y maps n-cells into n-cells, and any

n-cell containing points on both sides of lx>y is mapped into itself.

(iii) If 7i , ... , i„ and jx, ... , j„ are distinct sequences, then F/,,...,/„ ^

Fj,,...,;, and r,,,..., ,-„ n Tjx,..., }m = F„ ,...,,„(! FJx.h .
(iv) There exists a bounded open set V such that <f>\(V), ... , <p^(V) are

disjoint and UiMHc V.
We recall Lindstrom's construction of Brownian motion on a nested fractal

starting from random walks on F(n). Treat F(n) as a graph by saying that x

and y are adjacent if they belong to a common n-cell. Since F(n) is defined

as the image of F under a family of similitudes, we restrict our attention to F

momentarily.

Say that pairs of adjacent vertices {x, y} and {u,v} in F are equivalent

if||x->'|| = ||M-'y||. Fix x £ F . Let the equivalence classes of edges of the

form {x, «} , u £ F , be Cx, ... , Cr, and suppose |C;| = m}■■, j = 1, ... , r.

Say that a vector (px, ... , pr) is a set of basic transition probabilities if px >

p2 > ■■■ > pr > 0 and £'Pj - mj — I . Let (tx, ... , rr) be distributions on

(0, oo) with finite second moments, and let tj = /0°° xtj(dx), j = I, ... , r.

We can define a stochastic process on F<"' by specifying that if we arrive at
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a vertex x at a time t, then the probability that the next vertex we visit is y

will be proportional to Pj if {x, y} £ Cj; the distribution of the time required

to move to y will then be %j . The evolution at time t is independent of the

previous evolution of the process. We will refer to such a process as a random

walk with parameters (p, t) .

Let Yf1' be a random walk on F(") . For 1 < k < n, a random walk is

induced on F("_fc' by sampling Y"/"' at the times it visits F(n~fc) and using

the strong Markov property. Suppose the parameters of f/'!) are (p, t) and

the parameters of the induced random walk on F("~^ are (p(k), fk*>). In

general, p ^ pW and t ^ t^ for any k. We say that the specification (p, t)

is stable if p = /7(") and there exists k > 0 such that f"~>(dt) = r(kn x dt) for

n=l,2,....

If {Xt} is a process on T with continuous sample paths, let Sq,Ic = 0

and S„'k = inf{7 > S*z\:Xt £ F^\{X(S^f_k}}. Lindstrom has shown the
following two theorems.

Theorem 1.1. For any nested fractal T, there always exists at least one stable

specification (p, t) .

Proof. This is Theorems V.5 and VI.5 of [9].   □

Theorem 1.2. Let (p, t) be a stable specification. Then, there exists a strong

Markov process {Yt} with continuous sample paths on T such that for any

k>0, {Y(Sn'k)}rf=0 is a random walk on F<*> specified by (p, z(k~k x dt)).

Proof. This is Theorem VII.8 of [9].   □

Remark. Proposition IV. 11 of [9] shows that it is always possible for a random

walk on FO) to pass directly between any arbitrary vertices of F(0). It follows

that for any stable set of basic transition probabilities pr > 0.

Henceforward, we will always assume that we are working with some arbitrary

stable specification (p, t) and the Brownian motion Yt that it generates. To

review, the three parameters of Brownian motion Yt are

v = the linear scaling factor,

p = the volume scaling factor,

k = the time scaling factor.

We also have the following derived parameters:

df = logy p = the fractal dimension,

ds = log^ p = the spectral dimension,

dw = logy k = the dimension of the walk.

2. Estimates of hitting times

We will begin with two lemmas on finite Markov chains. We first identify

the stationary measure of a weighted random walk on a finite connected graph

(G,3?). For each edge {x, y} £ G, let wx,y = wy,x be a strictly positive

number, and let dx = zZy^Nxwx,y ■ Define PXjy = wx,y • dxx if {x, y} is

an edge and Pxy — 0 otherwise. Then it is easy to see that P is a stochastic

matrix on GxG. Let Xn be a Markov chain on (7 with transition matrix P.
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Lemma 2.1. For x in G, let m(x) = dx • (Y,y(EGdy)~x ■   Then,  m(x)  is a

reversible stationary measure for {Xn}.

Proof. As Px>y = wXyy - d~x we see that

m(x)-Px,y = wx>y- f Ydz j     =m(y)-Py,x,
\zeG    I

so that m satisfies the detailed balance equations.   □

Next, we wish to bound expected hitting times for a finite Markov chain.

Suppose E is an arbitrary finite set, and let P be a stochastic matrix on E.

Let Xn be a Markov chain on E with transition matrix P. Let j £ E be

fixed, and suppose 6 = inf/e£ Pjj > 0. Let 7} = inf{n: X„ = j}.

Lemma 2.2. E% < (1 - d)~x for all i£E.

Proof. Define the matrix P by

Pjj =Pjj> Pu - 0>    i^J'>

Pa =Pu + Pij - 0;      Pik = Pik,    k # i, j.

It is easy to verify that P is stochastic. Let Z„ be a Markov chain with

transition matrix P. If Sj = inf{n:Zn = j}, then Sj has a shifted geomet-

ric distribution with parameter 6, whatever the starting state i. So, E'Sj =

(1 - 6)~x for all / in E. To compare E'Tj and E'Sj, define the matrix Q

on E x E by

Q((k,i),(j,j)) = e,
Q((k,l),(j,q)) = (Pkj-e)-(l-6)-x-Plq,        q?j,

Q((k ,l),(r,q)) = Pkr-(l-d)-x-Plq,        q,r^ j.

Straightforward calculations show

YQ((k,D,(r,Q)) = P(k,r),

£G((*.0.(r, Q)) = P(l, q).
k,r

It follows from this that Q is a stochastic matrix that defines a coupling of X„

and Z„ . Let {(X„, Z„)} be a Markov chain on E x E starting from (/, i)

with transition matrix Q. If i ^ j, then if Zn - j, either X„ = j too, or

Xn_x = j, by definition of Q. Thus, 7) < Sj , so that FT, < F'5^ = (1 - 6)~x
for all / in E.   □

We now return to Brownian motion Yt on T. For j; 6 T, let 7], =

inf{7 > 0: Y, = y}.

Lemma 2.3. Let F* be an n-cell in T and suppose x, y £ F*. There exists a

constant B independent ofi x, y, and F* such that ExTy < B • (p/k)".

Remark. Corollary IX.5 of [9] shows that k > p. So Lemma 2.3 shows that

the expected hitting times on an n-cell are bounded by a decreasing geometric

sequence.
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Proof. Suppose Y0 = x. Let Si = inf{7: Yt £ F^\{x}}, and let Sk =

inf{t:Yt £ F^\{Y(Sk_x)}}, A: = 1,3,.... Define Tx = Sx, Tk = Sk - Sfc_,,
k = 2, 3, ... . By the strong Markov property, {Y(Sk)} is a weighted random

walk on F("). We can write

rNy 1
(2.1) ETy = E   E   £r,-|F(So),...,F(S,vJ      ,

l

where Ny - inf{Tc:7(St) = y}. By the strong Markov property, 7} is con-

ditionally independent of Y(SX), Y(Sf), ... , given F(S,_i) and Y(St). For
an arbitrary index i < Ny, suppose F(S,-_i) = u and F(S,) = v, where

(u, v) is in the equivalence class Ck .   Then the conditional distribution of

Tt will be xk(k-" x dt) and F[F;|F(S,_i) = u, Y(St) = v] = k~" - tk . Let
t* = max{7!, ... , tr} . Then

ETy = E £F[r,|y(S0),...,r(s*,)]

(2.2) ^ ' ir Ny

= e J]F[r;|y(s,_1),F(s,)] <r"7*F[/v,],
i

since Ny is measurable with respect to cr(F(So), ... , Y(Sf/y) ■

Define a sequence of "special" stopping times Sq, S[, ... by letting S'0 = 0

and taking S'k+l = inf{S„ > S'k:Y(Sn) £ F* and 7(S„_,) = F(S[)}. Define
My as the smallest m such that Y(Sm) = y and Sm is special. Clearly My >

Ny . We can write

(2.3) My = YiYUlJ + l) ,

where K is the number of special stopping times before S(My), Vj is the

number of excursions from F(S,') into F^\F* that Y takes between S- and

S('+1, and Uij is the length of the jth such excursion. Note that nested fractals

do contain vertices belonging to a single n-cell. Thus, Vj = 0 may occur for

certain vertices; in this case, [/,, is undefined.

We can regard F(SJ), Y(S'2), ... as a Markov chain on F*, with transition

probabilities given by {px, ... , pr}. Since {px, ... , pr} is a stable set of basic

transition probabilities, px > • • • > pr > 0. Thus P[Y(SX) = 77|F(S2) = y] > pr
for all u in F*. By Lemma 2.2,

(2.4) EK<(l-pr)~x.

To estimate Vj, define the multiplicity of a vertex v in F(w) as the number

of n-cells that contain v. Let p be the maximum multiplicity of a vertex

in F(n). Then, Vt is always dominated by a geometric random variable with

parameter p~x . Thus,

(2.5) EVi<p-l.

Suppose Vi £ 0. Then Uij is the number of steps required by a weighted ran-

dom walk Yj on F(n) starting from some vertex z^y to return to z, given
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that Yx 0 F*. Necessarily, the multiplicity of z is at least 2, so

P[YX £ F*] > 1/2. Let R2 be the number of steps required for F/ to re-

turn to z . An elementary conditioning argument gives

(2.6)       EZRZ > EZ[RZ\YX ? F*]P[YX f F*] > \EZ[RZ\YX f F*] = \EVti.

To bound ERZ , use (px, ... , pm) as weights and apply Lemma 2.1, to see

ERz<m(x)-x=dfx-[ Y dy) <l-2.(   Y  P*,y)
^       i \yZFW      j \all edges /

<2-px -(#of edges in F(")) <2-px -A-p".

We condition on K ,VX, ... ,VK and apply (2.6) and (2.7), giving

E[My] = E   E   Y \itV*J+1) K,VU...,VK

(2.8) =E   £ljrE[Uij + l\K,Vl,...,VK]\

" K

<E  YV-   ■(2-2-px-A-pn + l).
.1=1    .

Similarly, conditioning on K and applying (2.5) and (2.4) gives

(2.9) E  Yvi   <EK-(p-l)<^l.
.7=1      J l      Pr

Combine (2.8) and (2.9) to get

(2.10) EMy<-J---[(p-l)-px-A-p" + l].
i    pr

Together with (2.2), this gives

ETy<EMyk-"t*

(2-")     ^•■T^(tr+<>-'>-^*(xr- °
Theorem 2.4. Let x, y £ T with \\x - y\\ < v~n . Then there exists a constant

D independent of x and y such that ExTy < D(p/k)n .

Proof. Let F(°°> = Uo° F{n) ■ Suppose first that x, y £ F<°°) and that there

is an n-complex T* such that x, y £ T*. There exists m > n such that

x, y £ F(m). If m = n, then the theorem reduces to Lemma 2.3, and ExTy <

B(p/k)~" . So, suppose m > n , and assume that if u, v £ F(w_1) then EUTV <

£™-1 2B(p/k)k . There must exist u, v £ F'm-"nP such that {x, u} and

{y, v} belong to the same 7n-cells. Then

ExTy < EXTU + E"TV + EvTy

m—l m

< B(p/k)m + Y 2B(p/k)k + B(p/k)m < Y ^B(p/k)k ,
k=n k—n



HITTING TIME BOUNDS FOR BROWNIAN MOTION ON A FRACTAL 229

by the inductive hypothesis and Lemma 2.3. However,

m oo

(2.12) Y 2W*)* < E 2WA)fc = 2B - (p/k)" - k/(k - p).
k=n k=n

Next, suppose x, y £ F(oo), but no n-complex contains both x and y. Since

the diameter of an n-complex is at least v~" , it follows that x and y belong

to adjoining n-complexes, say ra and Tb . If we let z e ra n T„ , then z £T00

and ||x - z\\ and \\y - z\\ are both less than v~" . Applying (2.12), we have

(2.13) ExTy < EXTZ + EzTy<4B- (p/k)~n - k/(k - p).

If x £ F^00' and y £ r\F(°°), then there exist n-complexes Tn, n = 1, 2, ... ,

such that y = C(fTn. If x £ F(°°) and ||jc - y\\ < v~n, then there ex-

ists N such that m > N implies sup{||x - z||:z 6 Tm} < v~n. Let Tn =

inf{7: v, e T„} . Then Tn < Ty and Tn | Ty by the sample continuity of Yt.
By monotone convergence,

ExTy = lim ExTn < 4B - k/(k - p) - (p/k)n.
fltoo

Finally, let x £ r\F(oo) and suppose \\x - y\\ < v~n. For n = 1, 2, ...

there exists xn £ F(") such that x„ —► x as n —> oo. Since Ty is a lower

semicontinuous function and Yt is a Feller process, it follows that

ExTy < liminfEx"Ty < 45 • k/(k - p) - (p/kf.
n—*oo

Take D = 4B • k/(k - p). This completes the proof.   D

Corollary 2.5. ExTy <C-\\x- y\\« where q = log„(k/p).

Proof. This follows directly from Theorem 1, if we take C — Dk/p.   D

Remark. In terms of the dimensions introduced at the end of § 1, q — dw-df.

This agrees with results of Barlow and Perkins [2] for the Sierpinski gasket and

Krebs [7] for the Vicsek snowflake.

3. Applications

In this section, we apply the bound in Theorem 2.4 to study the behavior

of Brownian motion on a nested fractal. An immediate application is to show

recurrence of {Y,}.

Proposition 3.1.   {Y,} is point recurrent.

Proof. Let F,° be a random walk on F(0) with parameters (k, x). Then it is

trivial to see that Y,° is point recurrent. Since ExTy is bounded for x £ F(0),

y £ r, it follows that Y, itself is point recurrent.   □

A second application of the hitting time bound is to show that Brownian

motion on a nested fractal has a stationary distribution given by normalized

Hausdorff measure on the fractal and has transitions that are absolutely con-

tinuous with respect to its stationary distribution. Since these results are quite

similar to those in [7], proofs will be sketched.

Recall that k is the time scaling parameter for Brownian motion on T. For

n = 1, 2, ... let Y, be a random walk on F'"', with transition distribu-

tion the same as Y, , but with transition times distributed exponentially with

parameter kn.
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Theorem 3.2. Let Yt and Y[ be two independent copies of Brownian motion on

T. Let Tm = inf{u: Yu = Yf} . Then Tm < co a.s.

Sketch of Proof. By Aldous [1], if F(") and Y'(n) are two independent random

walks on F<">, and if T^ is the first time that ?(") and Y'(B) meet, then

£T'"' < C-maXijE'Tj. A calculation similar to that in Theorem 2.4 shows that

maxjjE'Tj is bounded independently of n . Since Y" -» y, in distribution, it

follows that FFv/ < liminfFF(") < oc . Therefore, Tm < oo a.s.   □

Let 7/ be log„ i/-dimensional Hausdorff measure restricted to T and normal-

ized so that w(r) = 1. Let n, be the distribution of Yt.

Theorem 3.3. Yt has stationary distribution n and nt —> n in total variation

norm.

Sketch of Proof. F(") has a stationary distribution n„ for each n that is con-

centrated on F(">. If we regard {nn} as a sequence of measures on T, tightness

allows us to choose a weakly convergent subsequence n'n . Let n'n —* 770 . It is

easy to see by weak convergence that r]0 is a stationary measure for Yt.

To see that 7/0 is actually normalized Hausdorff measure, the scaling property

of Yt shows that for any measurable set A, t]0(A) = t]o(A^). But Theorem

4.4(1) in [6] shows that this property characterizes Hausdorff measure on F,

within a normalization.   D

Theorem 3.4. For all x £ T and all t > 0, n, is absolutely continuous with

respect to n.

Sketch of Proof. Theorem 3.3, together with the scaling property of Brownian

motion, shows that n(A) = 0 implies nt(A) - 0 for all t.   D

Finally, we wish to apply the bound in Corollary 2.5 to study local times for

Yt. We will begin by showing that a local time exists at every point of T. Let

x £ T, and recall Tx = inf{7 > 0: Yt = x} . We say that x is regular for {x} if

PX[TX = 0] = 1.

Lemma 3.5. Every point xofT is regular for {x}.

Proof. For any y 6 T,

PX[TX >e]< Px[Ty > e/2] + Px[Ty < e/2, Ty + Tx(STy) > e]

< Px[Ty > e/2] + py[Tx > e/2] < (2/e) - (2C\\x -y\\")

where the second inequality tacitly applies the strong Markov property. As y

is arbitrary, PX[TX > e] = 0. As e is also arbitrary, PX[TX = 0] = 0.   □

To apply this lemma, we cite a general theorem about Markov processes.

Theorem 3.6. A necessary and sufficient condition that there exists a local time

for a Markov process X at x is that x be regular for {x} .

Proof. This is the first part of Theorem V.3.13 of [3].   □

Corollary 3.7. There exists a local time for every point x £ T.

Besides showing that local times exist, Corollary 2.5 allows us to estimate

their modulus of continuity. For u > 0, let

(3.1) p(u)=    sup    (l-Exe-T>-Eye-T*)x/2.
x,yCT

\\x-y\\<u
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Now, for any x and y , Exe~T" > 1 - ExTy , so that

l-Exe-T>'Eye-T* < l-(l-ExTy)(l-EyTx) < ExTy + EyTx <2C-\\x-y\\«.

Thus, p(u) < C • uql2. We will also need a version of Garsia's inequality for

nested fractals.

Theorem 3.8. Let F be a closed subset of Rd and let n be a measure on F

such that there exist constants cx (F), c2(F), dF so that if BF(x, r) — F n {y £

Rd: \x - y\ < r} then

cx(F)rdF < n(BF(x, r)) < c2(F)rdF   VxeF,  r > 0.

Let p be an increasing function on [0, oo) with p(0) = 0, and f:R-»R+

a nonnegative symmetric convex function, with limM_00 *F(m) = oo. Let H be a

compact set in F and let /://-» R be a measurable function. Suppose that

0-LA^fJyf)^^<-
Then there exists a constant Cf (depending only on cx(F) and dp) such that

(3.2) \f(x) - f(y)\ < 8 ̂         V-1 (JgJ p(du)

for 77X77 almost all x,y in H. If f is continuous, then (3.2) holds everywhere.

Proof. This is Lemma 6.1 of [2].

We note that if n is normalized Hausdorff measure restricted to T and p

is defined by (3.1), then n and p satisfy the conditions of Theorem 3.8. Take

*F(t7) = exp(|w|), and for x £ T, let Lf denote the local time process at x.

Then we have

Theorem 3.9. A version of {Lf} can be chosen that is jointly continuous in x

and t. In particular, for this version,

\Lf -Ly\<C- \\y - x\\«/2[- log \\y - x\\ A 0 + 2/q].

Proof. Let x,y, z £ T be arbitrary. Let N > 0. By Proposition 3.28 in

Chapter V of [3],

Px    sup  \Ly - Lz\ > 28   < 2eNe-s/piny-zm.
.0<t<N

As in [4] or [2], take Y(y, z, N) = sup^,^ \Ly - Lf\. Then

Px  expQ^^|)>A   <Px[Y(y,z,N)>4p(\\y-z\\)logk]

<2eNk~2,

so that

Let H be a fixed compact set in T. Define

= BH<N(co).
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Taking expectations and applying (3.3) gives ExBh,n < 4eNn(H)2 . By apply-

ing Theorem 3.8, we have

r\\y-z\\

\Ly-Lf\< 16 / (logBH,N(co)-2qlogu)dp(u)
7o

f\y-A\
<ch,n(oj) (-loguV l)dp(u)

Jo

< cH,N(co)\\y - z\\"l2[- log \\y - z\\ A 0 + 2/q].

For any x £ T, let {r„(x)} be a sequence of n-complexes shrinking to x.

Take

L* = limsup77(r„(x))"1 /      Lyn(dy).
n^oo Jr„(x)

—X —X

As in [4], we have Lt = Lf  //-a.s. and Lt  is jointly continuous in (x, t).   □

References

1. D. J. Aldous, Meeting times for independent Markov chains, Technical Report No. 118,

Dept. of Statistics, University of California, Berkeley, California, 1987.

2. M. T. Barlow and E. A. Perkins, Brownian motion on the Sierpinski gasket, Probab. Theory

Related Fields 9 (1982), 543-623.

3. R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory, Academic

Press, New York, 1968.

4. R. K. Getoor and H. Kesten, Continuity of local times for Markov processes, Compositio

Math. 24(1972), 277-303.

5. S. Goldstein, Random walks and diffusions defined on fractals, Percolation Theory and the

Ergodic Theory of Infinite Particle Systems (H. Kesten, ed.), 1987.

6. J. E. Hutchinson, Fractals and self similarity, Indiana Univ. Math. J. 30 (1981), 713-747.

7. W. Krebs, A diffusion defined on a fractal state space, Stochastic Process. Appl. 37 (1991),

199-212.

8. S. Kusuoka, A diffusion process on a fractal, Probabilistic Methods in Mathematical Physics

(K. Ito and N. Ikeda, eds.), 1987.

9. T. Lindstrom, Brownian motion on nested fractals, Mem. Amer. Math. Soc, vol. no. 420,

Amer. Math. Soc, Providence, RI, 1990.

Department of Statistics, Florida State University, Tallahasee, Florida 32306-1037


