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ABSTRACT. A series y_ ap of nonnegative real numbers is determined up to
a constant multiple by the comparisons of its subsums, provided that a; <
Y isn@ and {an} decreases to 0. This characterization is an improvement of
Leth and Malitz’s results.

1. INTRODUCTION

Any sequence {a,} of nonnegative numbers induces a preordering on subsets
of N in the following way

I<J ifandonlyif » a;<) a
iel jes
Leth [4] gave conditions on the sequence {a,} under which the induced pre-
ordering determines the sequence up to a constant multiple. He proved

Theorem 1. Let {a,} and {b,} be two nonincreasing sequences of real numbers
such that

(i) a, >0, b, >0, lim,_na, =0, and lim,_,, b, =0,
(i) an<ra=>;,ai and by <R, =3, bk,
(i) Y, a:i <Y jesai ifandonly if 37, bi <3 i, bj forany I, J CN.
Then there is a constant o such that b, = aa, forall ne N .

Note that the condition a, < r, in (ii) is satisfied if and only if the set of
subsums E = {3 eqa,; €, =0, 1} is an interval. For more on the structure of
the set £ one can consult [3].

This theorem can be seen as a result on purely atomic measures. In fact
Chuaqui and Malitz [2] originated this problem by looking for necessary and
sufficient conditions for the existence of g-additive probability measures com-
patible with given preorderings.

Malitz [5] has strengthened Leth’s result by proving the same conclusion
under the weaker assumption

(i)’ Y, ai =3 ;csa; ifandonlyif 35, bi=3,.,b; forall I, JCN.
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Recently Nymann [6] extended Leth and Malitz’s results when the series
Y a, and > b, are convergent.

The main result of this work is to prove the conclusion of Theorem 1 under
the weakest assumption

(iii)” > ,ai =3 ;a; implies } ,b;=>,b; forall I,JCN.

2. PRELIMINARIES AND MAIN RESULT
The following result can be found in [4, 6].

Proposition 1. Let {a,} be a sequence of real numbers. Assume that 0 < a,,; <
an<rp=3,,,ai forall ne N and lim,_a, =0. Then

(1) Forevery 0 <r <Y 2 a;, there exists K C N such that r =3, a;.
If r < Y32, a;i then one can assume that N — K is infinite. If 0 < r
then one can assume K is infinite.

(2) There exists J, C (n, 0o) such that a, = 3, a;, with minJ, = n+1
forall ne N.

(3) Assume that the series Y, a, is divergent. Thenif 3,a; <>, a;, there
exists KCN—1I suchthat 3 ;a;+> yaxr =) ,4a;.

Let us remark that under the assumptions of Proposition 1 if g, = 0 for
some n, then a, = 0 for every n. Therefore we will always assume that
a, >0 forevery n.

Definition 1. Let {a,} and {b,} be two sequences of nonnegative real numbers.
We will write {b,} < {a,} ifandonlyif > ,a; =) ;a; implies >, b; =3, b;
forall I, JCN.

The proof of the following lemma can be found in [6].

Lemma 2. Let {a,} and {b,} be two sequences of nonnegative real numbers.
Assume that ap.y < ap < rp =Y ,a; forall n € N. Then b,y < b, <
Y isn bi for all n, provided that {b,} < {a.}. Moreover if lim,_.c a, =0 then
lim,_, b, =0.

The proof of the last statement is not given in [6], but it is not hard to deduce
it. Indeed, since {b,} is decreasing, lim,_,., b, exists. Using Proposition 1,
one can get by = Y, I b; where J; is an infinite subset of N. Therefore a
subsequence of {b,} converges to 0, which implies that limb, = 0.

Let us remark that if {b,} < {a,} then it is not difficult to see that if  a,
is divergent then > b, is also divergent. In the next proposition we prove the
converse.

Proposition 2. Let {a,} and {b,} be two sequences of nonnegative real numbers.
Assume that ap,.y < a, < r, = >...,a; and Y a, is convergent. Then if
{bn} < {an}, 3 by is convergent.

Proof. Assume to the contrary that ) b, is divergent and {b,} < {an}. Define

f and f by

i>n

f(Zai) = b

i€l

iel
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and
f (Zbi) =supq ) a;; ) b= biy.
i€l jeJ  jeJ i€l
Our assumptions on {a,} and {b,} imply that f is defined on [0, } a;] (with
values in [0, c]) and f is defined on [0, oo] (with valuesin [0, " a,]). First

let us prove that )
f(f(x))=x forevery x € [0, o).

Indeed, let x € (0, oo). Then by Proposition 1, the assumptions on {a,} imply
that f(x) = 3 ,c) a where M is a subset of N. Also if x = Y, b; then
J(x) =3y ai > ¥ a;i. So we can assume that M is infinite. Set J, = Y,, a;
where M, = M N(n, o) forall n € N. Then by definition of f one can find
L c N such that

Zai—é,,SZaiSZai and Eb,-=x.
ieM ieL ieM ieL
Clearly we have ) ; a; — z{,eM; i<n} @i < Y i>n @i - Then by Proposition 1, we
obtain
Z a; — Z a; = Z a;
ieL {ieM; i<n} i€Jn
for some J, Cc N-{0,1,..., n}. Since {b,} < {a,}, we have
Zbi: Z b,~+2b,~=x.
ieL {ieM; i<n} i€ty

Then > ticp; j<nybi < x forall n€ N. So 3, bi < x holds.

Assume that ), , b; < x. Then the third conclusion of Proposition 1
implies that there exists K, a nonempty subset of N — M, such that )", b; +
3"k bi = x. So by the definition of f we have

f(x)> Zai+zai,
ieM ieK
which contradicts the fact that f(x) = 3,, a;. Therefore,
f(f(x))=x forall x €[0, o).

Next we prove that f is strictly increasing. Indeed, let x,, x, € [0, c0) with
x; < X,. Proposition 1(1) implies that f(x) # f(x2). Put f(x)) = ¥y, a
and f(x;) =Y M, @i - Then by using Proposition 1, one can find K, a nonempty
subset of N — M, , such that

Z bi+Zb[= Z b;,
ieEM, iek IEM,

since x; = f(f(x1)) = Xy, bi and x; = f(f(x2)) = 3, bi . By the definition
of f we get

Y oa+d a<fx)=) a,

i€M, i€k i€M,
which implies that f(x1) = 3", ai < f(x2).
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The last step consists of proving that f is continuous. In order to show
that f is left-continuous (resp. right-continuous) at x € (0, oo0), it is enough
to prove that for some x, < x (resp. x, > x) with lim,. x, = x then
lim,_ f(x,) = f(x) because f is increasing.

Left-continuity is easy to show. Indeed, let x € (0, oo). Then f(x) =Y, a;
where M is an infinite subset of N . Since f(f(x))=x,wehave x =3, b;.
Set 6, = zieM,,bi and x, = x — 6, where M, = {i € M; i > n} for all
n € N. Then clearly we have lim,_.., x, = x and lim f(x,) = f(x), since

S a4 < Fm) < J(x).

{ieM; i<n}

So f is left-continuous on (0, co).

To complete the proof of continuity of f, let us show that f is right-
continuous.

Let x € (0, o), and again set f(x) = Y, a;. Since x = Y, b;, one can
assume that N — M is infinite. Put N - M = {k;, k, ...} and x, = x + by,
forall n € N. Then lim,_ x, = x. Since {x,} is decreasing, {f(x,)} is
a decreasing sequence with f(x,) > f(x) for all n. Then lim,_., f(x,) = @
exists and @ > f(x). Our assumptions on {a,} imply that w = ), a; for
some subset I C N. Since w > 0, one can assume that N — I is infinite. Set

Wy, = W+ z a;
{ieN—I; i>ng}

for ng € N. Then one can find /o € N such that f(x,) < w,, forall n>1/.
Since w < f(x,) for all n, we get that

foe)= Y a+) a
{iel; iS"O} i€Jn
for some J,C N—-{0,1,2,...,no} forall n>1[. Then
Xn=f(Fa))= D> bit+ Y b
{iel; i<n} i€Jy

for all n < ly. In particular, ) (i€l; i<ny} bi < x, holds for all n > [y, which
implies

x =limx, > Z b;.

{iel'; i<np}

Since this is true for all no € N, we get > ; b; < x. And because

w=>Ya Sf(zbi) <f)<Y a=o,
i€l i€l i€l

we get f(x) = w = lim f(x,). So the proof of the continuity of f is complete.
Therefore f((0, c0)) is an interval. It is not hard to see that f((0, oc)) =

(0, S a;). So there exists x € (0, c0) such that f(x) =Y., a; for n > 1,

which implies that x =}, b;. This yields a contradiction with ), b; = oo

for all n € N. So the proof of Proposition 2 is complete.

i>n

The next theorem states the main result of this work.
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Theorem 2. Let {a,} be a sequence of real numbers such that 0 < a,,, <
an < Y ;pai for all n, and let lim,_.a, = 0. Let {b,} be a sequence of
nonnegative real numbers such that {b,} < {an}. Then there exists a € R such
that b, = aa, forall ne N.

Proof. Consider the function f defined on [0, Y72, a;] by f(>,a:) =3, b;.
If 3 a, is divergent then f is clearly increasing (by Proposition 1). And if
Y a, is convergent then Y b, is convergent and again f is increasing (see
[6]). Therefore, f is almost everywhere differentiable (see [7, p. 96]). Let f
be differentiable at x € (0, 00). Set x =", a; with I C N. Define
h_{an ifneN-1,
"\ -a, ifnel.

Then
SO+ ha) = f(x) _ b
hn B an
forall n € N. Since f is differentiable at x, we deduce that lim,_(b,/a,) =
a exists. Assume that there exists ny such that b, /a,, # «. Put

A.—-{neN; ﬁz%} ifé"i>a.
an  Qp, ap,

Then A is a finite set. Therefore, using Proposition 1, there exists an infinite
subset I of N suchthat ),  a; =3, a.So

Z ai= Z ai,
ieA-1 iel-4
and since {b,} < {an}, we have
dYobi= ) b
ied—1 iel-4
This yields, by the definition of A4,

b b
2o E a; < Z b,'= E b[<ﬂ Z a;.
Gno jéazy i€A—1I i€I-4 o 124
Therefore, Y, ,a; = ,_,a; = 0, which implies that 4 = I, contradicting
the fact that A4 is finite and [ is infinite. So b, = aa, forall n.
We complete the proof by noticing that if b,,/a,, < o then one can set

A={neN; b—"S%}

an ano
Theorem 2 can be interpreted as a result on purely atomic measures. For the
nonatomic case, one can consult [1, 8]. In the next theorem an extension to
arbitrary o-finite measures is discussed. Notice that the finite case is proved in

[6].
Theorem 3. Let y be a o-finite measure. Assume that the range of u is an

interval. If u is a purely atomic measure, we will assume that the u-measure of
the atoms decreases to 0. Then any measure u' such that

u(A) = u(B) implies p'(A) = u'(B)

is proportional to u, i.e., there exists a € R such that u' = op.
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