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A QUANTITATIVE DIRICHLET-JORDAN TEST
FOR WALSH-FOURIER SERIES

FERENC MORICZ

(Communicated by J. Marshall Ash)

Abstract. We consider the Walsh-Fourier series J2akwk(x) of a function /

assumed to be of bounded fluctuation on the interval [0, 1). Every function

of bounded variation is also of bounded fluctuation on the same interval, but

not conversely. We present an estimate for the difference of f(x) at a point

x e [0,1) and the partial sum of its Walsh-Fourier series in terms of the

bounded fluctuation operator. This gives rise to a local convergence result. As

special cases, we obtain a Walsh analogue of the Dirichlet-Jordan test and a

global convergence result due to Onneweer.

1. Introduction

We consider the Rademacher orthonormal system {rk(x): k > 0} and the

Walsh orthonormal system {wk(x): k > 0} defined on the unit interval [0, 1),

the latter in the Paley enumeration (see [4; 5, p. 1]).
Given a function / e L'[0, 1), its Walsh-Fourier series is defined by

oo -1

(1.1) Yakwk(x)>        ak:=      f(t)wkt(t)dt.
k=o Jo

The nth partial sum of series (1.1) is

n-l

sn(fi,x):=Yakwk(x),        n>l.
k=o

As is well known,

(1.2) s„(f,x)= ( fi(x + t)Dn(t)dt,
Jo

where + means dyadic addition and D„(t) := Y%=o wk(t)>   « > 1, is the

Walsh-Dirichlet kernel of order tz .
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For these and further definitions, notations, and properties of the Walsh

system, we refer the reader to [5].

2. Main results

By a dyadic interval in [0, 1) we mean an interval of the form

I(j, k) := [j2~k , (j + 1)2-*),        0 < ; < 2k and k > 0.

For a function / defined on I(j, k), we set

co(fi, I(j,k)) := sup{|/(x + t) - fi(x)\: x £ I(j, k)and0<t< 2~k}.

Now, / is said to be of bounded fluctuation on a dyadic interval I := I(jo,kf),

where 0 < ;0 < 2^ and ko > 0, if

(;0+l)2*-*o-l

ST(f, I) := sup       Y       W' J(J • fc))l < °° •

The quantity &if(f, I) is called the total fluctuation of / on 7. Clearly, every

function of bounded variation on 7 is also of bounded fluctuation on the same

I, but not conversely.

The notion of bounded fluctuation on the whole interval [0,1) is due to

Onneweer and Waterman [3].

By (1.2), we may write

(2.1) s„(f,x)-f(x)= f gx(t)Dn(t)dt,
Jo

where here and in the sequel we use the notation

gx(t) := f(x + t) - fi(x),        x, 7 6 [0,1).

Our main result reads as follows.

Theorem 1. If f is of bounded fluctuation on [0, 1), then for any n = 2k + m

with 0 < m < 2k and k > 0, and for any x £ [0, 1) we have

k

(2.2) \sn(f, x) - f(x)\ < 2~k Y VFf(gx, 7(0, ;)).
7=0

It is plain that if

(2.3) limex(0 = 0
/—+o

for some x e [0, 1), and if / is of bounded fluctuation on a dyadic interval

containing x, then

(2.4) lim ST(gx,I(0, j)) = 0.
J-KX>

Thus, Theorem 1 implies
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Corollary 1. If fi is ofi bounded fluctuation on [0, 1), and if condition (2.3) is

satisfied for some x £ [0, 1), then

(2.5) lim sn(fi, x) = f(x).
n—»oo

Relation (2.5) was proved by Walsh [6] in the case when / is of bounded

variation. Its trigonometric analogue is known as the Dirichlet-Jordan test (see,
e.g., [7, Vol. 1, p. 57]). The first quantitative version of the Dirichlet-Jordan

test was proved by Bojanic [1].

We note that if / is uniformly If-continuous on [0,1) (concerning this

notion see [5, pp. 9-11]), then relation (2.3) and a fortiori (2.4) hold uniformly

in x. In this way, Theorem 1 yields

Corollary 2. If f is uniformly W-continuous and of bounded fluctuation on
[0, 1), then we have (2.5) uniformly on [0, 1).

This result was first proved by Onneweer [2] in the case when / is of bounded
variation.

Actually, we will prove Theorem 1 in a sharper form as follows.

Theorem 2. If fi is of bounded fluctuation on [0, 1), then for any

(2.6) 77 = 2fc'+2fe + --. + 2S        kx >k2>--->kp>0,

and for any x £ [0, 1) we have

(2.7) \sn(f,x)- f(x)\<W(gx, I(0,kx)) + Y^'~kl~l^(8x,I(0, kf).
7=2

In case p = 1, the empty sum equals 0 as usual.

We make one more remark in the particular case when / is of bounded

variation on [0, 1] with the agreement that /(l) := f(0). More generally, we

agree to set fi(x+1) := fi(x). Denote by Vf(f) the total variation of / on the

interval [a, b]. (This time the end points a and b are not necessarily dyadic
rational numbers.) Since

&(gx, 1(0, j)) < Vl'(gx) < Vf^'(fi),

relation (2.2) becomes

k

\sn(fi, x) - f(x)\ < 2~k Y 2JVxx+2~'(fi)»
;=o

while (2.7) becomes

\sn(f, x) - f(x)\ < Vr2~ki (f) + Y 2k^-xVf+2-\fi).
7=2

3. Proof of Theorem 2

We start with the well-known identity (see, e.g., [5, p. 46])

(3.1) Dn(t) = D2k[(t) + rkx(t)Dmx(t),
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where n is given by (2.6) and

mx :=7?-2fc' =2*2 + 2^ + --- + 2^.

Thus by (2.1),

(32) s„(f, x) - f(x) = J gx(t)D2k-<(t)dt + J gx(t)rkx(t)Dmx(t)dt

=:AX+BX,     say.

Since
(2k>    if re [0,2-*.),

^l(/)-\o     if t£ [2~M)

(see, e.g., [5, p. 7]) and since gx(0) — 0, we find that

\Ax\ = 2k>   [      gx(t)dt <2k> f      \gx(t)-gx(0)\dt
(3.3) Jo J°

2~'cl

<2*> /      W(gx,I(0,kx))dt = W(gx,I(0,kx)).
Jo

Next, we will estimate Bx .  To this effect, we keep in mind the following

elementary facts:

(i) Dmx (t) takes on a constant value on each dyadic interval I(jx, kx), where

0<jx,mx<2k';

(ii) I(jx, kx) = 7(2./,, fci + 1) U 7(2;, + 1, kx + 1);

(iii)
(1       ift£l(2jx,kx + l),

rk'()     1-1     if 7 €7(2;, + l,kx + l);

(iv)   u :=  7 + 2_/C|-1   is a one-to-one mapping of 7(2;',,/c, + l)   onto

7(2;', + 1, kx + 1); in each case we assume that 0 < ;', < 2kl  and kx > 0.

Thus, by (i)-(iv),

Bx=   Y Dmx(jx2-k')\ f gx(t)dt- f gx(t)dt)
jx=0 [Jldj^ki + l) J/(2;1 + l,fc, + l) J

2*1-1 .

(3.4) =   Y Dmfja-kl) / {^(7)-gx(7 + 2-fc'-1)}c77
Pq Jl(7h,k, + \)

2*1-1    ..

=   E   / U,W-o'x(? + 2-/:|-1)}7)w,(7)77'7.
;,=0 ■'/(27i,*i+l)

We note that the integration domain occupies only one half of the interval

[0, 1). We introduce a second difference function as follows

(3.5) hx(t):=gx(t)-gx(t + 2-k>-x).

Similarly to (3.1), we may write that

Dmx(t) = D2h(t) + rk2(t)Dm2(t),

where
7772 := m, - 2k> = 2k> + --- + 2k'
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(cf. (2.6)). From (3.4) and (3.5) it follows that

2*i-l    .

B\=Y hx(t)D2k2(t)dt
jx=0 Jl{2jl,kl+l)

(3.6) 2*1-1    .

+ E  / hx(t)rh(t)Dmi(t)dt
jx=0 Jl{2jx,ki+l)

=:A2 + B2,      say.

Using an argument analogous to the one occurring in (3.3) and the fact that

u := t + 2jx2~k,~x is a one-to-one mapping of 7(0, kx + l) onto 7(2;',, kx + 1),

yields

(3.7)
2*1 -*2"'

i^i= iki Y /       hx(l)dt
j[=0    Jl(2ji,kl+l)

f f2*i-*2-l )
=  2k> {    Y   hx(t + 2jx2-k'-x)\dt

7/(o,fc,+i) [   Jx=0 J

. ("2*1*2-1 ]

<^2 {    Y    \gx(t + 2jx2-k<-x)-gx(t + (2jx + l)2-k<-x)\\dt
Jl(0,kl + \) [    h=Q J

<2fc> / W(gx,I(0,k2))dt = 2k^-xW(gx,I(0,k2)).
Jl{0,k, + \)

Now, we turn to B2. Relying upon properties (i)-(iv), we can deduce that

(cf. (3.4))

2*1-12*2-1 7

52=   E   E Dm2(j22-kn\ / hx(t)dt
jx=0 h=o ^/(2;,,*,+i)n/(2;2,*2+i)

- / hx(t)dt\
Jl(2jl,kl + \)nl(2j2+\,k2+\) J

(3.8) 2*1-12*2-1

=   E   E   / {hx(t)-hx(t + 2-k>-x)}Dm2(t)dt
;,=0  j2=0 Jl(V\,k{ + \)ni(2h,k2+\)

2*2-1 (2;2 + l)2*|-*2-'-l

-  E E / {hx(t)-hx(t + 2-k>-x)}Dm2(t)dt.

72=0     ;i=2,22*i-*2-'    •''Wi .*. + »)

We note that this time the integration domain occupies only one fourth of the

interval [0, 1). We introduce a third difference function

(3.9) nx(t):=hx(t)-hx(t + 2-ki-x).
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Repeating the above reasoning, from (3.8) and (3.9) it follows that

2*1-12*2-1    .

B2= E   E  / nx(t)D2h(t)dt
;,=0   ;2=0 Jl(2ji,kl + l)nl(2j1,k2+l)

(3.10) 2*1-12*2-1

+ E   E   / nx(t)rki(t)Dm,(t)dt
jx=0  j2=0 Jl{2ji,ki+l)nl(2j2,k1+l)

=:A3 + B3,      say,

where 7773 := 7712 - 2kl = 2k* -\-h 2k».

Analogously to the last equality in (3.8), hence we may conclude that

2*1~*3-1 2*2"*3-l

M3i = 2*>  E   E / «x(t)dt
jx =0      ;2=o   JlVJi ,ki+l)ni{2j2,k2+l)

2*2-*3-l(2;2+l)2*i-*2-1-l

(3.11)       =2*'   Y E       / nx{t)dt
72=0      ;1=2;22*.-*2-'    Jl^2h^ + \)

f2*2-*3-|-l(2;2+l)2*i-*2-'-l ^

^2*3/ S     E E |^(r + 2;,2^'-1)|U7.
W+D {     j2=o        ;1=2A2*.-*2-' J

By (3.5) and (3.9),

|7/x(7 + 2;',2-fc'-1)| < \gx(t + 2jx2-k>-x)-gx(t + (2jx + l)2-k*~l)\

+ |fo(f + 2-**"1 + 2;',2-fc'-1) - &(/ + 2-**-' + (2;, + l)2-fc'-')|.

Substituting this for the integrand in (3.11) results that

\Ai\<2k> [ W(gx,I(0,ki))dt
(3.12) •'/(o.fc.+i)

= 2k>-k*-lW(gx,I(0,k3)).

Furthermore, it is also not difficult to see that

2*1-12*2-1 2*3-1

*=E EE
7i=0   ;2=0   73=0

x / {tlx(t)-nx(t + 2-k>-x)}D„h(t)dt
Jl(2jl,kl+l)nl(2J2,k2+i)nl(2ji,ki+\)

2*3"' (2J3+l)2*2-*3-'-l (272+l)2*i"*2-'-l

= E     E E
73=0     ;2=2732*2-*3-'        7'1=2722*i-*2-1

x/ {nx(t)-nx(t + 2-k>-x)}Dmi(t)dt,
Jl(2j,,k, + \)

where the integration domain now occupies only one eighth of the interval

[0,1).
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By an induction argument we can proceed up to Bp_x = Ap (observe that

Bp = 0) in the same manner as above. Owing to the difficulties in notation, we

omit the details.
Finally, we combine (3.2), (3.3), (3.6), (3.7), (3.10), (3.12) (and the analogous

estimates of \Aq\ for q — 4, 5, ... , p) and obtain (2.7). Thus, the proof of
Theorem 2 is complete.
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