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A QUANTITATIVE DIRICHLET-JORDAN TEST
FOR WALSH-FOURIER SERIES

FERENC MORICZ

(Communicated by J. Marshall Ash)

ABSTRACT. We consider the Walsh-Fourier series Y a,wy(x) of a function f
assumed to be of bounded fluctuation on the interval [0, 1). Every function
of bounded variation is also of bounded fluctuation on the same interval, but
not conversely. We present an estimate for the difference of f(x) at a point
x € [0, 1) and the partial sum of its Walsh-Fourier series in terms of the
bounded fluctuation operator. This gives rise to a local convergence result. As
special cases, we obtain a Walsh analogue of the Dirichlet-Jordan test and a
global convergence result due to Onneweer.

1. INTRODUCTION

We consider the Rademacher orthonormal system {ry(x): kK > 0} and the
Walsh orthonormal system {w;(x): k > 0} defined on the unit interval [0, 1),
the latter in the Paley enumeration (see [4; 5, p. 1]).

Given a function f € L'[0, 1), its Walsh-Fourier series is defined by

00 1
(1.1) Y qw(x),  a= / f(O)wyt(t)dt
k=0 0

The nth partial sum of series (1.1) is
n—1
sn(f, X) :=Zakwk(x), n>1.
k=0
As is well known,
1
(1.2) sif .= [ e+ opaa,

where + means dyadic addition and D,(f) = Y, Owk n > 1, is the
Walsh-Dirichlet kernel of order n.
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For these and further definitions, notations, and properties of the Walsh
system, we refer the reader to [5].

2. MAIN RESULTS
By a dyadic interval in [0, 1) we mean an interval of the form
1, k) :==[j27%, j+1)27%), 0<j<2*andk >0.
For a function f defined on I(j, k), we set
o(f,I(j, k)):=sup{|f(x+1t)— f(x)]: x€I(j, k)and 0 <t < 27¥}.

Now, f is said to be of bounded fluctuation on a dyadic interval I := I(jo, ko),
where 0 < jo < 2% and ko >0, if

(Jo+1)2k—*k0—1

F(f,D=sup Y olf, I, k)| <.
K2k ok

The quantity 7 (f, I) is called the total fluctuation of f on I. Clearly, every
function of bounded variation on [ is also of bounded fluctuation on the same
I, but not conversely.

The notion of bounded fluctuation on the whole interval [0, 1) is due to
Onneweer and Waterman [3].

By (1.2), we may write

1
(2.1) (0,20~ ) = [ aDa(0)at,
where here and in the sequel we use the notation
g&(t):=f(x+1)-f(x), x,te€[0,1).
Our main result reads as follows.

Theorem 1. If f is of bounded fluctuation on [0, 1), then for any n =2k + m
with 0 < m < 2% and k >0, and for any x € [0, 1) we have

k
(2.2) Isa(f > %) = f(x)| < 27K Y27 (g, 1(0, j)).
Jj=0
It is plain that if

(2.3) lim g.() = 0
t—+0

for some x € [0, 1), and if f is of bounded fluctuation on a dyadic interval
containing x , then

(2.4) lim 7 (g, 1(0, j)) = 0.
Jj—oo

Thus, Theorem 1 implies
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Corollary 1. If f is of bounded fluctuation on [0, 1), and if condition (2.3) is
satisfied for some x € [0, 1), then

(2.5) Jim s, (f, x) = f(x).

Relation (2.5) was proved by Walsh [6] in the case when f is of bounded
variation. Its trigonometric analogue is known as the Dirichlet-Jordan test (see,
e.g., [7, Vol. 1, p. 57]). The first quantitative version of the Dirichlet-Jordan
test was proved by Bojanié [1].

We note that if f is uniformly W-continuous on [0, 1) (concerning this
notion see [5, pp. 9-11]), then relation (2.3) and a fortiori (2.4) hold uniformly
in x. In this way, Theorem 1 yields

Corollary 2. If f is uniformly W-continuous and of bounded fluctuation on
[0, 1), then we have (2.5) uniformly on [0, 1).

This result was first proved by Onneweer [2] in the case when f is of bounded
variation.
Actually, we will prove Theorem 1 in a sharper form as follows.

Theorem 2. If f is of bounded fluctuation on [0, 1), then for any
(2.6) n=2k 42442k K Sky>-o>k, >0,

and for any x € [0, 1) we have

p
(2.7) Isa(f, X) = f(X)| S F (8, 1(0, k1)) + Y 28H~1F7 (g, 1(0, k))) .

Jj=2

In case p = 1, the empty sum equals O as usual.

We make one more remark in the particular case when f is of bounded
variation on [0, 1] with the agreement that f(1) := f(0). More generally, we
agree to set f(x+1) := f(x). Denote by V}(f) the total variation of f on the
interval [a, b]. (This time the end points a and b are not necessarily dyadic
rational numbers.) Since

F (8, 100, ) < V5 (&) S V2 (),
relation (2.2) becomes
k .
Isn(f, %) = f(X)| < 27K 3 2V (),
Jj=0
while (2.7) becomes

p
Isn(f 5 X) = fOO)] S VE 2 () + 3 2kt 2 ).

Jj=2

3. PROOF OF THEOREM 2
We start with the well-known identity (see, e.g., [, p. 46])

(3.1) Dy(t) = Dok, (t) + 1, (1) D, (1),
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where n is given by (2.6) and
myi=n-2k =2k 42k ... 40k,
Thus by (2.1),

1 1
6y U010 = [ aDuadr+ [ alon, Dm0 d
. 0 0
=:A;+ By, say.
Since
D (t)_{zk- ifte[0,27k),
270 ifreh, 1)
(see, e.g., [5, p. 7]) and since g,(0) = 0, we find that

/0 T 8x(1) dt

27k
Szkl ‘W(gXaI(O,kl))dt=‘W(gXaI(Oakl))
0
Next, we will estimate B;. To this effect, we keep in mind the following
elementary facts:
(i) Dpm,(t) takes on a constant value on each dyadic interval I(j,, k;), where
OSjl,ml <2k';
(i) I(ji, ki) =1Q2j1, ki + HUI2jy + 1, ki + 1)
(iii)

27k
14, = 2% < 2k /0 |gx(t) — £:(0)] dt

(3.3)

1 iftel(2j,k +1),
I, (1) = , . .
-1 iftelj+1,k +1);
(iv) u = t+ 2 %k-! is a one-to-one mapping of I(2j,, k; + 1) onto

I1(2j1 + 1, k; + 1); in each case we assume that 0 < j, <2k and k; > 0.
Thus, by (i)-(iv),

2k -1
B, = Z Dml(jlz_k') {/ gx(t)adt _/ gx(t)dt}
j1=0 1(2ji, ki+1) I12j1+1, ki+1)
2k -1
G4 = 3 DnGi2h) [ {ge(t) — ge(t+ 270 )}
izo 12)y , ki +1)

2k
(1) = ge(t+ 2747} Dy ()
j,Z::O /1(21.,k.+1){g (1) - g1+ )} Dim, (1) dt

We note that the integration domain occupies only one half of the interval
[0, 1). We introduce a second difference function as follows

(3.5) hy(t) == gx(t) — gx(1 + Z_k'_l)-
Similarly to (3.1), we may write that
Dy, (1) = Dy (1) + 11, (1) Dy (1) 5

where

m2:=m1—2k2:2k3+...+2kp




A QUANTITATIVE DIRICHLET-JORDAN TEST FOR WALSH-FOURIER SERIES 147
(cf. (2.6)). From (3.4) and (3.5) it follows that

2k

AT
| hz‘—‘:o 1(2jy, ki +1) (0 2"2()
(3.6) =
* h()ry, (£) Dy, (8) dt
j:z—':o /1(2j|,k,+1) x()7ky (1) Dy (2)
=1 A, +B,, say.

Using an argument analogous to the one occurring in (3.3) and the fact that
u:=t+2j;2k~! is a one-to-one mapping of I(0, k;+ 1) onto I(2j;, k; +1),
yields

(3.7)
2k|—k2—|
|4,| = |2k hy(t) dt
jlz=:0 1(2jy, ki +1) *
2ki—ka g
_ 2kz/ ho(t+ 25270 @
100, ky+1) :{‘0 + 1
2ki—ka
52"’/ > lg(t #2270 — gt 4 2y + D27RY| 3 dr
1(0,k|+1) jl=0

< 2kz/ F7 (8, 10, ky))dt = 22~k=197 (g, 1(0, ky)).
10,k +1)

Now, we turn to B,. Relying upon properties (i)-(iv), we can deduce that
(cf. (3.4))

2ki—12k2 1
B, = D (sz‘kZ){/ hy(t) dt
j.z=:0 jfi:o " 121, ki +1)01(2)2, ka+1) *
—/ hx(t)dt}
12y, ki +1)NI(2ja+1, ka+1)
(3.8) g
=2 2 / {ha(t) = he(t 2757 }Dy, (1) lt
ji=0 j,=0 Y12, ki+DNI2)2, ka+1)
2k 1 (2j+1)2 k1
=> X {ha(t) = hy(t + 27571} Dy (1) .

=0 j=2jy2ki—ky-1 1(2jy , ki +1)

We note that this time the integration domain occupies only one fourth of the
interval [0, 1). We introduce a third difference function

(3.9) Mx(2) 1= he(t) = ha(t £ 27571,
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Repeating the above reasoning, from (3.8) and (3.9) it follows that

k11221
B=% % / 1 (6) D (0) dlt
ji=0 j,=0 I(2j, , ki +1)NI(2j5 , ky+1)
(3.10) 2hi—12%2-1
+ / e ()7t (1) Doy (8)
112y, ki +1)NI(2j3 , ky+1)

J1=0 j2=0
=: A3+ B3, say,

where mj3 :=my — 2k =2k ... 4 2k
Analogously to the last equality in (3.8), hence we may conclude that

2=k 2ka—k3

3| =20 S ) / N (1) dt

121, i+ )NI(2)2, k2 +1)

J1=0 J2=0
2o-k3_1 (2jp+1)2k "Ry
(3.11) =2k %" > nx () dt
=0 j=2j2hi—k-t Y120 k1)

2ke—k3—1_1 (2jy+1)2k1 ~*2=1

52"3/ (42527005 dt.
l(0,k,+|){ > > Inx(t+ 2/, )1

J2=0 j|=2j22kl'k2'|
By (3.5) and (3.9),
Ime(t + 212757 < lge(t + 2127571) — ge(t 4 (21 + 1)2707Y)
+ gt +2707 4212707 — g (12707 4 (2 + 1278 7).
Substituting this for the integrand in (3.11) results that

43] < 2 / F7 (g, 1(0, ks)) dt
I(O,k1+l)

=2b~h-197 (g, 1(0, k3)).

Furthermore, it is also not difficult to see that

(3.12)

2k 12k 1 2k3 1
By=3 3 2
Q=0 j»=0 j3=0
% / {Nx(O)—nx(t + 27571} Dy, (1) dit
121,k +1)NI(2)2 , ka+1)NI(2)3, k3 +1)
2k3—1 (2j3+])2"2”‘3“'..] (2j2+|)2kl—k2-‘_]

>

=0 jp=2j32k2—ks=t  ji=2j0ki—ke =t

x / {nx(t) = (1 4275} Dy (1) b
I(2jy, k+1)

where the integration domain now occupies only one eighth of the interval
[0,1).
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By an induction argument we can proceed up to B,_; = 4, (observe that
B, = 0) in the same manner as above. Owing to the difficulties in notation, we
omit the details.

Finally, we combine (3.2), (3.3), (3.6), (3.7), (3.10), (3.12) (and the analogous
estimates of |4, for ¢ = 4,5, ..., p) and obtain (2.7). Thus, the proof of
Theorem 2 is complete.
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