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TWO WEIGHT ^-INEQUALITIES FOR THE HARDY OPERATOR,
HARDY-LITTLEWOOD MAXIMAL OPERATOR,

AND FRACTIONAL INTEGRALS

LAI QINSHENG

(Communicated by J. Marshall Ash)

Abstract. Suppose <J> is an appropriate Young's function and w(x), v{x)

are nonnegative locally integrable functions. Let T denote one of three lin-

ear operators of special importance that map suitable functions on R" into

functions on R" .

For the Hardy operator T, we study the inequality

roo roo

/    <t>(\Tf(x)\)w(x)dx<C       <b(\f(x)\)v(x)dx
Jo Jo

and for the Hardy-Littlewood maximal operator or fractional integrals T, we

discuss the inequalities

j   <t>(\T(fv)(x)\)w(x)dx<C j   4>(\f(x)\)v(x)dx.
Jr" Jr"

In all cases we obtain the necessary and sufficient conditions.

1. Introduction

We shall be concerned with integral inequalities of the form

(1.1) / ®\Tf(x)\)dw <C f <D(|/(x)|)c7/7,
JR" JR"

where dw, dp are positive Borel measures on R", <P is an even Young's

function on 7? with 0(0) = 0, and T is one of three linear operators of special

importance that map suitable functions on 7?" into functions on 7?" . Apart

from their intrinsic interest, such inequalities are important in application, since

they imply the boundedness of T as a map between the associated Orlicz spaces.

It is of particular interest to obtain estimates for the best constant C in (1.1).

The first of the cases we consider is the Hardy operator

(1.2) Tf(x)= f f(t)dt,        xe7?+ = (0,co).
Jo
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Let d) be a nondecreasing right continuous function on 7?+ with <j>(0+) = 0,

and define <P to be Young's function <P(7) = JQ(f)(s)ds.   Let <f)~x  be the

right continuous inverse of <f> and set *¥(t) = /0 <f>~x(s) ds, the complementary

function of O. (See [3] or [4] for the details of Young's function and its

complement.) Our first result is

Theorem 1. Let w , v be nonnegative, locally integrable functions on R+ , and

suppose that <P is a Young's function such that both <P and its Young's comple-

ment *F satisfy the A2-condition, i.e.,

(1.3) <P(27) < Ad>(t),    V(2t) < BV(t),       forallt£R+.

Then, with T defined in (1.2), there exists a constant C, independent of f,
such that

rOO rOO

(1.4) /    <P(Tf(x))w(x)dx<C       <P(f(x))v(x)dx
Jo Jo

if and only if there exists a constant K such that

(i.5)      (f^H'GM^)*)**
for all e > 0 and all x > 0.

Furthermore, if we denote the best constants in (1.4) and (1.5) by C and

K, respectively, then there are positive constants Cx, C2, 0 < Xx < 1 < X2 <

Xi < co, and 0 < 6 < 1 depending only on <P such that

' C2K*<    when K>1,

(1.6) CxK<C<\c2K^    when6<K<l,

C2K^    when 0 < K < d.

The special case <P(7) = \t\p (1 < p < oo) of Theorem 1 is the well-known

result of Muckenhoupt [5], which generalized the classical Hardy inequality

r' (- f fi(t)dt\   dx<(-^—\   j   fi(x)pdx   for/(x)>0and/7> 1.

Muckenhoupt's theorem is that given p > 1 and a couple of nonnegative locally

integrable weight functions w(x) and v(x), the inequality

a CO fX P \WP /     rOO \   1/P

J   f(t)dt   w(x)dx)      <C(J    \f(x)\pv(x)dx)

holds if and only if

aoo \ l/P   /   pr \ l/p'
77j(x)^x)      f /   v(x)-x/ip-X)dx]       =K<00

and K < C < px/p'(p')2lp'K, where l/p+ l/p' = 1. In these cases the constants

K appearing in (1.6) and in Muckenhoupt's theorem are equivalent.

Our second theorem concerns fractional integrals in 7?" . Following Sawyer

in [8], we work with general convolution operators of the form

(1.7) T(fp)(x) = K*(fp)(x)= f  K(x-y)fi(y)dp(y),
Jr"
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where the convolution kernel K(x) is a positive lower semicontinuous radial

function decreasing in |x| and satisfying the growth condition K(x) < CK(2x)

for every x £ R" . We shall write %e for the characteristic function of a set

E c R" , and put \E\M = JE dp. The Luxemberg norm || • H^) on the Orlicz

space Lin,,) = {/: JRn ®(\f(x)\)dp(x) < 00} is given by

(1-8) \\fiU{fi) = inf jfl > 0: J <D (^M) dp(x) <l\.

With these notations we have

Theorem 2. Let <P be a Young's function as in Theorem 1, T be as defined in

(1.7), and dw, dp be positive Borel measures on R" . Then in order that there

exists a constant C independent of fi such that

(1.9) / ®(T(fp)(x))dw(x) <C I ®(f(x))dp(x)
Jr« Jr"

for all f > 0, it is necessary and sufficient that there is a constant C such that

both

(1.10) / H>(T(exQn){x))dw(x) < C^(e)\Q\M < 00
JR"

and

(1-11) \\T(XQ™)\\v(w) < C\\xQh(ew) < OO

holdfior all e > 0 and all dyadic cubes Q.

In [7, 8] Sawyer and Wheeden discussed fractional integrals on weighted LP

spaces. Our Theorem 2 is a generalization of Sawyer's result in [8].

Finally, we discuss the celebrated Hardy-Littlewood maximal function

(1.12) Mf(x)=     sup     -L [ \f(y)\dy.
xeQ, cube \\l\ Jq

In fact, we shall deal with the following variant of the maximal function due to

Fefferman and Stein (see [1]):

(1.13) T fi(x,t) = Mfi(x,t) = sup-^- [ \fi(y)\dy,        x£R",t>0,
Q   \Q\ Jq

where the supremum is taken over all the cubes Q in R" , containing x and

having side length i(Q) > t. For this operator we obtain

Theorem 3. Suppose dp is a positive Borel measure on 7?"+1 = {(x, t):x £

R", t > 0} and w(x) is a nonnegative locally integrable weight function on

R" . Let <P be a Young's function that satisfies the A'-condition (see [4])

(1.14) <b(uv) < C4>(u)®(v)  forallu,v>0

and its complement *P still obey the A2-condition. Then, for T defined in

(1.13), 777 order that there exists a constant C independent of fi such that

(1.15) /    ®(T(fw)(x,t))dp(x,t)<C j <S>(f(x))w(x)dx,
Jr"+u Jr"
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it is necessary and sufficient that there is a constant C such that

(1.16) [®(T(wXq)(x, t))dp(x, t) < C\Q\W < oo
Jq

for all cubes Q, where Q = {(x, ?): x € Q, 0 < t < i(Q)} .

It is well known that the two-weight norm inequality for the Hardy maximal

operator defined in (1.12) has been characterized by Sawyer [9]. Later on, a
similar result for the Fefferman-Stein maximal function was obtained in [6].

Our Theorem 3 extends their results.

In this paper we need the following elementary properties of Young's function

<P and its complement ¥ (see [4] or [3]):

(1.17) t<<t>-x(t)V-x(t)<2t

and

(1.18) 0(0 ~ r0(O,        V(t)~ttf>-X(t),

when O and *P both satisfy the A2-condition. The symbol' ~' means the ratio

of the two sides is bounded between absolute positive constants.

2. Proof of theorems

Proof of Theorem 1. Necessity. If / > 0 and supp/ c [0,x] for given x,

then from (1.4) it follows that

(2.1)

<P (j" f(t) dt) J" 777(7) dt < J°° <l>(Tf(t))w(t) dtKC^ ®(f(t))v(t) dt.

Set fi(t) = <t>-l(l/ev(t))Xlo,xl(t). If f*f(t)dt = 0, we have

(y°° eu,)<£ (yV'O/eT;))^.

If /* f(t)dt = oo, then ^^(l/ev^ev^dt = oo because of (1.18). This

implies that there is a nonnegative g(t) such that fQ>(g)ev < oo and

Jq g(t)(l/ev(t))ev(t)dt = co. Thus inequality (1.4) ensures that for arbitrary

A>0,

|[*, oo]U, < |{*: Tg(s) > X}\tw = \{s:<&(Tg(s)) > <P(a)}U

Therefore |[x, oo]|£U) = 0. Finally, we consider the case 0 < /0* f(t)dt < oo.

Using (1.18) and (2.1), we obtain

(22) u>-'^MO-i^))rw<-ciyTf)a

^fwi,sc('"'(s)*Hs))''
This is (1.5).
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Sufficiency. We need the following inequality: We will show that condition

(1.5) implies that

(2.3) fci < CO-1 (^r-)
ev     <rlev) yeJx  wj

holds for all e > 0 and all x > 0.
Indeed, from (1.5) it follows that

tftp-Hl/ev)(2 4) Jo   _—_- < C
\     -     J ±      1/11       ("OO \    _   *-•

(j>-x(l/ejx  w)

Setting n = nXE such that 7/e4'(l/£ J™ w) J°° w = 1, we have

(2-5) l- ~ rx (-^-) ~ *"' (—kr-)
n        vlx w)        \i*Sx W

by use of (1.17) and (1.18). Substituting (2.5) into (2.4) and using (1.18), we
obtain

thus

fei       < £ < c<p-> (_!_)

Since ne = l/(*¥(l/e f™w) f™w) is a continuous function of e and takes

values from 0 to oo, we can have ns = 6 for 8 given arbitrarily, and we

conclude (2.3).

Now we can assume fi >0 and choose xk such that Tf(xk) = J^ f(t) dt =

2k for all integers k if it is possible. Then we have

rOO fxk+\ /"OO

/    d>(Tfi)w< J]<P(2*+1) /      tt;<C^<P(2A:-1) /    w
Jo k •'xk k ^Xk

(2-6) , *
/   rxk \    r°°

= CE° /   fwdt) / w-
k Vxk-, j Jxk

Let k be fixed and set fik - f(t)X{Xk-,,**](') • The Holder inequality in Orlicz

spaces shows that for any ek > 0 given,

/    fi < c\\fiku(ekV) —^J
Jxk-\ bku     y(ekv)

Choose ek such that jO(fk)ekv = 1. Then ||AII<i>(eAu) < 1 • Thus, from (2.3)
it follows that

therefore,

(2.„ Jrf)<^=c«
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Substituting (2.7) into (2.6) and observing that the supports of the fik are dis-

joint, we have

rOO r rOO

j    d>(Tf)w<CYJj<S>(fik)v = C J    <&(/>.

To discuss the relation between the best constant C in (1.4) and K in (1.5),

we introduce some indices concerning <P and ¥. Define

;,f "#(")   ._U(J)(U)77<d = int < sup = /»<p ,
«>0 *(«) „>0   0(77)

Then l/p<j> + l/p^> = 1 and 1/<7<i>+ l/<4 = 1 . Since both <P and ¥ satisfy the
A2-condition, we have 1 < q<&, p® < oo (see [4]). Thus equalities (2.8) imply

that

a**<P(w) < ®(Xu) < Xp»®(u)   when X > 1,

( ' ) Xp°®(u) < O(Am) < a^<P(77)   when X < 1

hold for any u > 0. Also analogous inequalities hold for 4*. By use of these in-

equalities, (1.17), and (1.18), it is easy to obtain the estimate (1.6). For example,

C] = <7<d/p<d follows from the derivation of (2.2) since q® < utp(u)/®(u) < p® .
Moreover, the three power indices in (1.6) are Xj = I (i = 1, 2, 3) when

<P(m) = |t7|p . This completes the proof of Theorem 1.

Proof of Theorem 2. If (1.9) holds, it is obvious that the dual norm inequality

(2.10) \\T(gw)\\V(eit) < c\\8ylew)

is true for all e > 0 and all g > 0. With / = e/Q in (1.9) and g — Xq in
(2.10), we obtain (1.10) and (1.11).

Conversely, suppose (1.10) and (1.11) hold and, without loss of generality,

that / is nonnegative and bounded with compact support. For every integer k

we consider the open set £lk = {T(fp) > 2k} . From the Whitney decomposi-

tion lemma (cf. [8]), we obtain a sequence of dyadic cubes {Qk} satisfying

(1) Ok = Uj Qj and (Qk)° n (Qk)° = 0 for i * j;

(2) RQk c Q/t and 3RQk nQ^/0 for all k, j;

n)             0) £j*3fl*<C**forall*;

(4) the number of cubes Qk intersecting

a fixed cube 3Qk is at most C;

(5) Q) g Qf implies 7c > 5.

In (2.11), £° is the interior of set E, and RQ denotes the cube concentric

with Q with 7? times the side length, the constant 7? in (2.11)(2) being > 3
and depending only on the dimension 77.

As in [8], we choose an integer m > 2 sufficiently large, depending only on the

growth condition of K(x) defined in (1.7). Write Ek = Qk n (clk+m-X\clk+m)
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for all (k, j). It is established in [8] that

\Ek\w<2-kl[ fT(xEkW)dp+ f fiT(xEkW)dp)
(2.12) \hOj\ak+m ' hQ)nttk+m ' }

= 2~k(of + ij).

Let B £ (0, 1), to be chosen later, and define

E = {(k,j):\Ek\w<B\Qk\w},

F = {(k,j):\Ek\w > p\$\w and af > r)},

G = {(k,j):\Ek\w > B\Q*\W and af < rk}.

Thus we have

[<&(T(fp))dw < Y.^(2k+m)\^k+m-A^k+mU < C£\Ej\w<!>(2k)
k k,j

(2.13) =c(  J2   +   E   +   E  )\Ef\w^(2h)
\(kj)eE    (kj)eF    (kj)eG/

= C(l + II + III).

For the term I, we have

I < 5>I<#U*(2*) < CB^(2k-xWk\w
k,j k

(2-14) (2k

<c^Y.    \inrn>A}i«,rfo(A) = c/? / o(r(///))rf«7.
fc   J2*-' JR"

Now we estimate the term II:

<C^|4|„,0   -^ / /r(te77;)^    ,

where Cfi = (2/0)p* by use of (2.9).

Let (k, j) be fixed and let e = ekj > 0. On writing 7?^ = 3Qj\£lk+m , we

have

1      f 1
ttztt- I fiT(xE*w)dV <-[T^l/X^ll*^)!!^^™)^)-
\Qj\w JiQ^\iik+m ' £k,j\Qj\w

If e = ekJ is chosen such that !®(fixRk)£k,jdp = 1  then H/x^llo^) < 1 ,

and from (1.11) it follows that

(2.16)        ||T(xQkw)\\W{efl) < C\\xQk\W(eW) < CO"1 (        *        ) ekJ\Qf\w.
' ' \ek,j\!*lj\w)
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Therefore, we obtain

-ip / fT(XEkW)dp < CO"1 (        *        ) .
\Qj\wJR) ' \£k,j\Qj\w)

On substituting the last estimate into (2.15), it follows that

(2.17) kjsWUj\w k,jJ

<C [ 0(f)dp.
Jr"

The last inequality holds since  EfcjX/j* < CY,kXak\ak+m < C(m + 1)  by

(2.11)(3).
To estimate the term III in (2.13), we need the following O-inequality for

the dyadic maximal operator. For a a positive Borel measure on 7?" , define

Mdafi(x) = sup        -i- / \fi(y)\ da(y)   for / e LXoc(a).
xeQ, dyadic cube \\l\o Jq

Then for any given Young's function O as in Theorem 2,

(2.18) / <$>(MdJ)doC j <&(f)do
Jr" Jr"

holds for all f £ L^(a).
Indeed, it is known that the operator Md  is weak type  (1,1)  with the

constant 1 with respect to the measure a . It follows that

|n <S>(MdJ) da < C J°° \{MdJ > 2X}U(X) dX

<c°r(\f   \f\da)mdx
Jo    \A J{\f\>*} J    A

= cf   ff ^dX\fi\do<C ( <t>(\f\)da

since

Jo    X2 uj0     t2        ~    u   J0  t2~i» u

Let Hf = {i:Qk+m n 3Qk ? 0} and L) = {s:Qk n 30 / 0}. Then for
given (k,j),

3QknQk+mc |J Qk+mc |J      (J     Qk+m.
ieH* seLkj i:Q*+mCQ*

Set Ak = (l/\Qk\n) JQk fidp. In [8] it has been obtained that

(2.19) rj<CY,\[      T(xEkW)dp)Ak+m.
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Following the approach in [8], we shall prove that

(2.20) YI \Ek\w®(2k)<C f <&(f)dp
(kj)eG jR"

k>N, k=M(mod m)

with a constant C independent of the integers N and Af, where TV e (-00,00),

0 < M < m . The indices (k, j) are restricted by this convention until the proof

of (2.20) is completed.

As in [8], we select the "principle" cubes from {Qk} . Let Co consist of those

indices (k, j) for which Qk is maximal. If G„ has been defined, for every

index (t, u) in C7„ we select the maximal cubes Qf c Q'u such that Ak > 2A'U .

The indices of those cubes so selected form the set Gn+X . Define T = U^Lo ̂ « >

and for each (k, j), define P(Qk) to be the smallest cube Q'u containing Qf

with (t, u) £ T. Then we have

(2 2H (1) P{QJ] = Qt" impUeS AJ ~ 2A'"'

1 '    } (2) Qk C QL and (k,j),(t,u)£T imply A) > 2A'U.

Observing that the cardinality of Lk is at most C and if Qk+m c Qf with

(k + m, i) £ T then P(Qk+m) = P(Qk), we obtain

(2.22)

£   \Ek\wO(2k)<Cy£\Ef\w^lr^r)     (by (2.12) and (2.8))
(kj)eo \\<dj\wj

I \

<cZ\ej\** d^E     E     \{jnk+J^AAi+m\

V e*+mcG* /

+ CEi*Ju* T^     E     f(A n^ti,)^) 4+wl
\l^|u'/e77;:(*+m,v)erLV'/Gf+m 7        Jy

(by (2.19))

/ \

<cy,\e%y:* t&t   e   \(Lj^d»)A'+m}

V ef+mce< /

yujiv, ieHk.(k+mtj)€rlVQ, I        \J

= C(IV + V).
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To deal with IV, we deduce the following estimate for fixed (t, u) £T.

(2.23)

E    E    i*M ^     E     \(SQk+J^^^m\
k,jseL^.P(Ql)=Q'u ^}^     i:P(Qkfm)=P((fs),  LV  Qi ' J

\ flf+"CQf /

<E       E       \E)\"*\Tfit\  T(XQkW)dp]    (by(2.21)(l))
k,jseL):P(Q')=Q'u \\Uj\™JQ$ )

< CE     E     1*7 u* (i^r A ̂ w)**)
fc,7,€i*:P((2*)=f2i Vl^^-'fl/ /

- C E /  a>(A^(r(^Uc2' 0))) ̂ ^    (since the cardinality of Lk < C)

<C J<S>(T(AtuxQ,p))dw    (by (2.18))

<coK)|c2^U   (by (i.io)).

Summing (2.23) over (7, u) £ T yields

(2.24) IV <C   £   0(4)|<2^.
(r,«)er

Now we estimate V. For every (k, j) let 1^ = {/: i £ Hf , (k + m, i) £ T}

and Pf = [JJ6r* Qk+m • Then

(2.25) J ' >

= E i**i»* wrLT{xvw) £^+m*tf~ ^ •
(fc.y)eG yi^yiu)^ ^(€r* y     y

Let (fc, _/) be fixed and let e = ekj > 0. Using the Holder inequality in the

Orlicz spaces, we have

^/^(^-)(E4+m^)^

(2.26)

< fSr\\T(xQkW)h{£fi) E4+M*Qf-
J «(ep)
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If ekj is chosen such that /0(£/Gr* Ak+mXQk^)^k,j dp = 1, then

/ , At     XQk+m ^ 1 >

ier*
' *(£/i)

and by use of (2.16) and (2.26) we have

llWiyl""'^ L-gr* y       y      e*,./U<fr«o

Therefore it follows that

v<c y -^-<c y —
(2>27) (fc,;)6Ge^I^U {k,j)6GSk<J

= c E E°(4+w)ig?+mu<c E *(^)ieiu
(*,7)6G/er* (/,«)€r

since any fixed Qk+m occurs at most C times in the above sum (see [7, 8]).

From (2.9) and (2.21)(2) it follows that for any fixed x

OO        .

Y   *(A'u)Xq,(x) < C sup 0(4) Y 2^ < CO(Af^/(x)).
(7,«)er xeQ'u k=0

Combining (2.22), (2.24), and (2.27) shows that the left side of (2.20) is bounded
by

C   Y  ^(A'u)\Q'uU < C I   Y   ®(A'u)xQ<u(x)dp
(2.28) (''")er C'M)6r

< cjcJ>(Mdf(x))dp <cjo(fi)dp   (by (2.18)).

Let TV -» oo in (2.20) and then sum over M = 0, 1, ... , m- 1 to obtain

(2.29) III<C J 9(f) dp.

In (2.14) choose /J so small that CB < \. It is easy to conclude (1.9) from

(2.13), (2.14), (2.17), and (2.29). Hence for arbitrary / > 0 we obtain (1.9) by
the monotone convergence theorem. This completes the proof of Theorem 2.

Proof ofi Theorem 3. The proof of the necessity is easy and we omit it. For the

sufficiency, first, we prove the theorem for the relative dyadic maximal operator

Nf(x,t) = sup-^ [ \f(y)\dy,       x£R",t>0,
\U\ Jq

where the supremum is taken over the dyadic cubes in 7?" containing x and

having side length at least t. In addition, assuming the side length at most

R, we denote the associated operator by NR . Obviously, NRfi(x, t) = 0 for

t > R and lim NRfi(x, t) = Nf(x, t)   (R -> oo).
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We shall prove that (1.15) is true for NR with constant C independent of

7? if (1.16) holds for all dyadic cubes. Once this is proved, a limit argument

shows that (1.15) holds for N.

Suppose / > 0. For every integer k let Qk = {(x, t):NR(fw) > 2k}.

According to a decomposition lemma in [6], there exists a family {Qf}jeJk of

dyadic cubes such that

(l)(l/\Qk\)JQkfiw>2k;

(2.30) (2) the interiors of Qf are disjoint;

(3)nk = \jjeJkQf.

Writing Ef = Qf \clk+x we have

/     Q(NR(fw)) dp<CY <£>(2k)p(Ek)
/nn+1 Z—' J
R+ k,j

by use of (2.30)(1) and the A'-condition. For every integer 5 let

Ts = \(k,j):2s<d>(-^— f  fiw) <2S+X),        Gs =    [J    Qf.
I \\Uj\w JQ)      J ) (kj)ers

Since all the cubes in the doubly indexed family {Qf: (k, j) £ Ts} have side

length < 7?, every cube will be contained in a maximal one. Let {Q,},er; be

the subfamily formed by these maximal cubes.  Then Gs = \Jier Qi c {x £

R":<3>(Mdf(x)) > 2s} . Therefore the right side of (2.31) is bounded by

s=-ooi€rs(k,j)ers, \ '«7' /      \I<41" J«j      I
QkcQ,

oo ,.

^CEE    E    2s+l       ®(N(XQkW)(x,t))dp(x,t)
s=-ocievs(k,j)ers,        Jej

QjjcQ,

(2.32) < C Y 2S+1 E L ^N(XQiw)(x, 7)) dp(x, t)
ier/Q'

<C£2*+1]T|<2,U    (by (1.16))
s iers

< CY25+l\ix € Rn-®(Md(fi(x)) > 2'}\w
s

<C f^(Mfuf)wdx< C f<J>(f)wdx   (by (2.18)).
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The rest of the proof follows easily from the following variation of Sawyer's

lemma that appeared in [6].

Lemma. Define for each y £ R"

yNf(x,t) = supjLJ\f(u)\du,

the supremum being taken in all cubes Q with x £ Q, side length more that t,

and such that the set Q - y = {x - y: x £ Q} is a dyadic cube. Then

M2kf{x't] * lo.iH'Ui /   yNf{x 't)dy'
\Q(U, 2K+i)\ 7e(o,2*+2)

where (2(0, 2k+2) = [-2k+2, 2k+2]n and by Mr we mean the maximal operator

obtained by considering cubes with side length less than r. Then we have

[    <t>(M2\fw)(x,t))dp(x,t)
Jr"++i

^C f    *\\ntTZ+2\\ I yNfi(x,t)dy)dp
Jr"++<       \\Q(0,2       )\Jq(0,2M) J

* \n<aCK+2v I I    WN(fw)(x, t))dp(x, t)dy
\Q(0,2k+2)\ Jq{o,2M)Jr?1

<C [<t>(f)wdx.

By letting k —» co we conclude (1.15). Theorem 3 is proved.
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