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Abstract. In a previous paper we characterized those H(A, n) (compact com-

plex surfaces constructed by Hirzebruch) that have nef cotangent bundle. In this

article we extend the methods to study more general branched coverings with

regard to nefness of their cotangent bundles.

1. Introduction

We first develop the notation. Let A. — {Lx, ... , Lk} be an arrangement

of k lines in P2 = P2(C). For p £ P2, rp is the number of lines in A

containing p. BP2 is the blowup of P2 at all p with rp > 3. Let L'j denote

the proper transform of L, in BP2 and A' = \J{L'j}. One defines tj by ts =

cardinality{p £ P2\rp = j} . Let F, denote the exceptional curve in BP2 over /?,

with rPi > 3, and let 7t,: BP2 -> F, be projection. For n: X -» BP2 a branched

covering, 5,^: X —> SC, will be the Stein factorization of n,• o n: X —> F,.

For any vector bundle E over a base manifold M, the projectivization

P(F) is a fiber bundle over M, with fiber Pq(E) over q e M given by

P„(F) « (E* \ 0)/C*. There is a tautological line bundle & over P(F) sat-

isfying (i) &r|p,(£) ~ 0(l)p,(£)V? € M and (ii) the projection pE: P(F) -» M

gives Pe-(£e) « 7s. In the case that E — T*M we will denote pF = /7r«A/
simply by p.

Recall that the vector bundle E is nef if c\e over P(F) is nef, that is,

C\(£,e) • C > 0 for all effective curves C in P(F).
In what follows, g(C) and e(C) will denote the genus and euler number,

respectively, of a curve C. For further development see [4, 5, 1].

The problem approached here will be: given a branched covering n: X —> Y

of compact complex surfaces, find conditions on Y along with the ramification

set of n in X sufficient to guarantee that T*X is nef. Cases handled include:

(i) Y = BP2 and(ii) T*Y is nef.
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2. Nef cotangent bundles

In this section we prove the main theorems, including the following working

theorem.

Theorem 1. Let X and Z be compact complex manifolds with dimcX = 2,

dime Z > 2, and with Z having nef cotangent bundle. Let n: X —> Z be

a holomorphic mapping with X' := {x £ X \ 77*1* is not of maximal rank}.

Assume that X' = (j Bj U qx U q2 U • • ■ U qu, where the Bj are irreducible, smooth

curves and the qx, q2, ... , Qn tire points. Then X has nef cotangent bundle if

Bj -Bj<0 and e(Bj) < 0 for each Bj in [j Bj.

Proof. Assume that B} -Bj < 0 and e(Bf) < 0 for each Bj in \JBj. We prove

nefness of T*X.
The mapping n: X —► Z induces 7i*: TX -> TZ, which in turn induces

n: P(T*X) — P(F*Z). Let ft be the tautological bundle over P(T*X), and
let t\2 be the tautological bundle over P(T*Z). U has indeterminacy set that

is contained in p~x(A) where p: P(T*X) —► X is projection and A = \JBj\J

qx\J---llqN.

Let C be an effective irreducible curve in P(T*X). For T*X to be nef we

show that C • ̂ f1 < 0. This is accomplished in three cases.

Case 1. Suppose that p~x(A) J> C. Let v: nC -> C be the normalization

of C. In this setting Uov: C —> P(T*Z) extends to be well defined and, by

Lemma 2, we have that (II o u)*(^fx) = v*(tl^x) + D where D is an effective

divisor on nC. So

c^ri = T/c.7,*(^,) = 7/c.((noz,r^2-i)-JD)

= deg(noiy)(noz/)(C)-^2"1 -nC-D<0.

The last inequality follows since Ylou(C) is a curve in P(F*Z), t\2 is nef, and

D is effective on r\C .

Case 2. Suppose that C is a fiber of p (and therefore C = P1). Then

C-t\\x =-l since t\x\c^O(l).

Case 3. Suppose C is contained in p~x(A) but is not a fiber of p. Then

p(C) = Bj for some j . For v: nC —> C the normalization of C, one has that

p o v: nC —> p(C). One has the vector bundle maps

0-*v*(^\c)^v*p*(TX\p{C))

and

o - v*P*Tp(C) - z/V(:r*|p(C)) - v*P*Np(Q - o.

Hence one of the sequence of sheaves (2.1) or (2.2) must be valid.

(2.1) 0^u*^x ^u*p*Tp(C)^Zx^0,

(2.2) O^z/^f1 -»i/VJV7>(C)-> Z2-> 0

where Zi and Z2 are sheaves with finite support on t/C. By letting Mx =

u*p*Tp(C) and Af2 = u*p*Np(C), we rewrite (2.1) and (2.2) as

(2.3) O-n^r^.Mi-fZf^O.
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By utilizing the long exact sequence associated to (2.3), along with Riemann-
Roch, one concludes that

,._h   r ,  .__,.   m~<r*tur\   ~r     J deg(/> o z/)c,(7>(C)) •/?(C),
C\ Ci   )-C = cx (v £,   )-nC<cx (Mj) • nC = i rxrt^w     Ir*\

\ de%(p o v)cx(Np(C)) - p(C).

Now cx(Tp(C))-p(C) = e(p(C)) = e(Bj) < 0 by our hypothesis. And similarly
we have that cx(N(p(C)) - p(C) = p(C) - p(C) = Bj - B] < 0 by hypothesis.

Therefore, in all cases <^fl • C < 0. So t,x • C > 0 and £x is nef, giving that

T*X is nef.   □

In the setting of Theorem 1 we prove

Lemma 2. For C contained in P(T*X) with C not contained in p~x(A), let

v: nC —> C be normalization. Then

where D is an effective divisor on nC.

Proof. First note that if g: Lx -> L2 is a holomorphic mapping of complex

line bundles over a curve (which we take to be) nC, then L2 = Lx+Dg where

Dg is the effective divisor on nC induced by the vanishing of the mapping

g. Next we let Lx = u*^1 and L2 = (Ilo i/)*(£~x) where n o v extends

to be well defined on 77C as C is not contained in p~x(A). Observe that

ti»: TX —► TZ induces the mapping 71*: t\\x —► c\2x, which in turn induces

71,: v*tf[x -+ iT\ov)*(cffx). Finally we take g to be the mapping nt: v*clx~x -»

(n o v)*(tlfx), giving the lemma with D := Dg .   □

Theorem 3. Let A be an arrangement of k > 3 lines in P2 with tk = 0.

Assume there are at least two points pj, i = 1, 2, with rPi > 3. Let BP2 be

the blowup of P2 at each point Pj with rPj > 3, and let Ej be the exceptional

curve over Pj with nj: BP2 -* Ej projection. Let L be the line containing px

and p2 in P2, and let L' be its proper transform in BP2.

Let n: X -► BP2 be any branched covering of BP2 with branch locus con-
tained in A'UEXU---UE„UL' where n~x(A'uEx u- • -uFnUL') has irreducible

components that are smooth. If n: X -> BP2 satisfies

(1) For each La £ Au{L}, e(La) < 0, and La • La < 0 for each irreducible

component La of n~x(L'a);

(2) e(Cj) < 0 for each irreducible component Cj of n~x(Ej), j = 1, ... ,n;

(3) g(SCt) > 1 for i =1,2 where st: X -> SQ and pt: SCt -> F, is the
Stein factorization of nton: X -> F,;

then T*X is nef.

Proof. Define Z = SCX x SC2 and construct the mapping s: X -» Z given by

s = sx x s2 where s,■: X -» 5C, is the Stein factorization of 71,^ o n: X —> Ei.

Then since (nx xn2)on = (px xp2)o(sx xs2) and nxxn2: BP2 —> ExxE2 isbi-

holomorphic on BP2 \ (j Ex U ■ • • UF„ uL', the singular set of Si x 52 is contained

in the set 7T-1(A'UFiU---UF„UL') = \JLjUn-x(Ex)U---Un-xl<(En)Un-x(L').

By hypotheses (1) and (2), e(Bj) < 0 for each Bj that is contained in the

set IJLj Un~l(Ei)U-■-U ff-1(^n) Un~l(L'). (1) gives that fi;- • 5; < 0 for Bj

contained in the set \JLjL)n~x(L'). If Bj is contained in n~x(Ex)U---Un~x(E„)
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then Bj - Bj < 0, since if nj is the branching order of 7r along Bj then

Bj - Bj < (l/nj)deg(n\B)Ej < 0. Now (3) gives that T*Z is nef. Apply

Theorem 1 to the mapping 5: X —> Z to conclude that T*X is nef.   □

Remark. One can drop the extra hypotheses on L (the line of collinearity con-

taining px and pf) of Theorem 3 and still conclude that T*X is nef, provided

that there is a third point p$, noncollinear with px and p2, also satisfying

g(SCi) > 1 where 53: X —► SC} is the Stein factorization of 713 o n: X —>

F3. The proof is similar to that of Theorem 3 if one lets s be the mapping

sx x s2 x Si : X -* SCX x SC2 x SC3.

Theorem 4. Let X and Y be compact complex surfaces with Y having nef

cotangent bundle, and let n: X —> Y be a branched covering with ramification

set |J Bj in X, where we assume that the Bj are irreducible and smooth. Let

(J Ca be the branch locus ofi n in Y. Then

Ca- Ca < 0 for each Ca in the branch locus in Y

=> Bj • Bj < 0 for each Bj in the ramification set in X

=> X has nef cotangent bundle.

Proof. Assume that Ca - Ca < 0 for each Ca in the branch locus in Y. Let

^*(Ca) = zZkno:kBak- Then

Baj • n*(Ca) = Baj • Y, nakBak = najBaj • Baj + Baj • Y, nak^ak

k k±j

= deg(7i|    )Ca- Ca

whence

(2.4) Baj • Baj = n~j deg(n\BJCa - Ca - n~JBaj - Y nakBak < 0,
k&

giving the first implication.

Assume that Bj-Bj < 0 for each 77, in the ramification set. We prove nefness

of T*X . Observe that for each Bj in the ramification set e(Bj) < 0, otherwise

e(n(Bj)) > 0 in Y, which contradicts that T*Y is nef. Apply Theorem 1 to

7t: X -> Y to conclude that T*X is nef.   D

Next we extend our viewpoint to arrangements of pencils of curves.

Definition. Let F, be a pencil of curves in P2 and A, = {Cjj\j = I, ... , kt}

be an arrangement of smooth curves in F, with each C,; intersecting each C,y

transversely (only) in the base locus (consisting of isolated points). We label

the base locus of F, by BLF,.
(1) An arrangement ofi pencils A is defined to be A = |J A, with each A, as

above.
(2) A general arrangement of pencils is defined to be an arrangement of pencils

A = (j A, satisfying:
(a) BLF, n BLF, = 0 if i\± j.
(b) After blowup of all points in (j BLF, to get BP2 and letting EC be

the resulting set of exceptional curves and A' be the arrangement of proper

transforms C\> of the curves Q, in A, we have that EC U A' consists of

smooth curves meeting transversely in normal crossings.
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(c) For each i and each j, CL is a nonsingular fiber of 77,.

(d) There are k > 3 pencils, say Px, P2, ... , Pk, with A D Ai U A2 U • • • U Ak
satisfying that nx x n2 x ■■■ x nk: BP2 —► P1 x P2 x • ■ ■ P1 is of maximal rank

2 on BP2 \ EC except possibly at finitely many points QX, Q2, •■■ , Qn■ Here

each 7i,: BP2 —> P1 is the holomorphic mapping associated to the pencil F,.

(e) For all i, no point of C,; lies in the base locus of F/ for I ^ i.

Theorem 5. Let A be a general arrangement of pencils in P2. Blowup all points

in the base loci to obtain BP2. Let n: X -> BP2 be any branched covering ofi

BP2 with branch locus in BP2 contained in EC U A' and ramification set in

n~x(EC U A') having irreducible components that are smooth.

Let 77,: BP2 -> P1 be the natural holomorphic projection associated to each

pencil Pj. Let s,r: X —► SCj and pj: SCj —> P1 be the Stein factorization of
nj: o n: X - P1. Then T*X is nef if:

(1) For the projections nx, ... , nk with nx xn2x ■■■ xnk: BP2 —► P1 x P1 x

• • • x P1 of maximal rank on BP2 \ {EC u finitely many points}, we have that

the euler numbers e(SC{) < 0 for i = I, ... , k.

(2) For each Cj £ ECU A' and each irreducible component Cj of n~x(Cj)

one has that e(Cf) < 0 and Cj -Cj < 0.

Proof. Define Z = SCX x SC2 x • • • x SCk and construct the mapping s: X —► Z
given by s — sx x s2 x ■ ■ ■ x sk where £,-: X -* SC, is the Stein factorization

of n,; o n: X -> P1. Then since (nx x n2 x ■ ■ ■ x nk) o n = (px x p2 x ■ ■ ■ x

Pk)°(si x s2 x ■ ■ ■ x sk), the singular set of sx x s2 x ■ ■ ■ x sk is contained in the

singular set of (nx x 7r2 x • • • x 7t^) o n U n~x(EC). Therefore the singular set

of sx x s2 x ■ ■ ■ x sk is contained in 7i_1 (qx U • • • U q^) U (U Cj). (1) gives that

T*Z is nef and (2) allows the application of Theorem 1 to conclude that T*X

is nef.   □

Remark. See Example 4.4 for a construction of a class of surfaces to which we

apply Theorem 5.

3. Applications

As an application of Theorem 3 we study galois branched coverings. Recall

that a branched covering n: X —► Y is galois if the deck transformations act

transitively on fibers of 77.

We begin by setting up the notation. Let A be an arrangement of lines in

P2 with at least 2 points px and p2 having rPi > 3 for z = 1, 2. BP2 is the

blowup of P2 at each point pj with rPj > 3, and let Ej be the exceptional

curve over pj . Let L be the line containing px and p2 in P2, and let L' be

its proper transform in BP2 .

Let n: X —► BP2 be a galois branched covering that is locally of form

(u, v) ^ (un , vm) with branch locus in BP2 contained in A' U (\JEj). The

line L\ £ A' is assigned branching order nt, where nt is the branching order

for each component L\ of n~x(L'i). Ej is similarly assigned branching order

rn j:, where Tn; is the branching order for each component Ej of 7i_1(F7).

Let the five parameter classes be given as follows:

(i) a parametrizes L'a £ A' U {7.'} ;

(ii) / parametrizes L\ £ A';
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(iii) j parametrizes Ej £ EC := the set of exceptional curves in BP2;

(iv) given a, /? parametrizes pp £ PLa where PLa := {pp £ L'a\3 two lines

L\, L'2£A'\L'a with L[nL'2=Pp};
(v) given a, y parametrizes py £ QLa where

QLa := {py £ L'a\3i with i ^ a with py £ L■ D L'a and py $ PLa} .

For Py £ QLa with py = L\ n L'a we let tz,, := ni. For pp £ PLa with

Pp = L\ n L'j let

Mp := the least common multiple^,, nf

where ni and ni are the respective branching orders of L\ and L\.

Theorem 6. Let A be an arrangement of lines in P2 with at least two points px

and p2 having rPl > 3 for i = 1, 2. Let L be the line containing px and p2

in P2, and let L' be its proper transform in BP2. Let n: X —> BP2 be a galois

branched covering that is locally of form (u, v) —> (u" , vm) with branch locus in

BP2 contained in A'U(\JEj) and with n~x(A'\J(\JEj)liL') having irreducible
components that are smooth. Then, in the notation of the above paragraphs,

T*X is nef if

<»2-£ («-£)- £ («-35)-£(i-ibK*iso
Py€QLa   X y/ PfePLn    V P/ J       X J/

for each La £ A U {L} .
(2) 2 - Y^i(l - l/ni)Ej • L\ < 0 for each E} an exceptional curve.

(3) Each Lj in A is blown up at least once.

(4) g(SCi) is positive for i = 1, 2 where 5,: X —► SCt is the Stein factoriza-

tion O/ 77, o 77: X —> P1.

Proof. This is a direct result of Theorem 3 after one computes that

^(deg„,r;)(2-j;J,-±)

e(Ej) = (degTil^) h-Y^-^JEj. iA ,

and

L'a-L'a<^-det(n\z,)L'a-L'a     as in (2.4).
TZq, <>

Here tzq = 1 if La = L and L £ A. See Hofer's dissertation [3] for similar

calculations. The two euler numbers are negative by (1) and (2) of the theorem.

L'a - L'a < 0 by (3) and the fact that L' has been blown up at least twice.   □

Remark. There are many situations where hypothesis (4) of Theorem 6 holds

naturally. See Example 4.1.
We give similarly an application of Theorem 4 in the galois setting.
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Theorem 7. Let T*Y be nef and let n: X -» 7 be a galois branched covering

having ramification set \J Bj in X and branch locus (j Ca in Y. We assume

that the Bj are smooth and meet transversely in at most normal crossings and

that the Ca are smooth. We further assume that n can be locally represented
by coordinate charts of the form (u, v) —> (un , vm). Then

Ca' Ca < 0 for each Ca in the branch locus in Y

«• Bj • Bj < 0 for each Bj in the ramification set in X

<=> X has nef cotangent bundle.

Proof. Under the assumptions that 7r is galois and locally of form (u, v) ->

(un, vm) and the Ca are smooth, it cannot happen that Baj meets Bak for

j ^ k where Baj and Bak are irreducible components of n*(Ca). (If p £

Baj n Bak and (u, v) is a coordinate chart centered at p with n of form

(u,v) -» (u", vm) =: (A, B), then the only local branching occurs at u = 0

and v = 0. Thus Baj is given locally by, say, 77 = 0 and then Bak is given

by v = 0 (and on our chart n = m). Then n({u = 0} U {v = 0}) = {A -

0} U {B = 0}, which contradicts that Ca is smooth.) Hence (2.4) gives that

Baj • Baj = n~} deg(7i|B )Ca-Ca. So in this setting Baj • Baj < 0 if and only if

Ca • Ca < 0, giving the first equivalence.

Theorem 4 gives that if Bj • Bj < 0 for all curves Bj in the ramification set

then T*X is nef. It only remains to show the converse. We adapt a splitting

lemma of Sommese [4]: if Bj is smooth and contained in the ramification set

of 77, then there is a splitting TBj®NBj « TX\B . The splitting is obtained by

utilizing the natural sequence 0 —> TBj -> TX\B —> NBj —> 0 and producing

a sub line bundle L of TX\B   that projects onto NBj.    L is the unique

line bundle contained in the annihilator of n* dA = nun~x du and n* dB =

mvm~x dv . Here (u, v) are local coordinates in X with Bj being given locally

by u = 0, and (A, B) are local coordinates in Y with A - u" and B = vm .

Once we have this splitting, 77, and NBj determine a curve C in P(T*X) and

£{"' • C = NBj - Bj = Bj • Bj < 0 since £x • C is nonnegative by our assumption

that T*X is nef.   □

4. Examples

Example 4.1. In [5], 77(A, 77) with k > 3 was shown to have nef cotangent

bundle iff
(a) For each L £ A, L is blown up at least once (in obtaining BP2).

(b) If tz = 2 then 73 = #{p\rp = 3} = 0.

(c) For all L £ P2, d(L) £ 2, and if n = 2 then S(L) ? 3 where S(L) is
defined as the cardinality of the branch locus in 7/ of x\n-i(LI)- n~x(L') —» L'.

Theorem 6 gives the sufficiency of (a), (b), and (c) for nefness of T*H(A, n).

This follows since 77(A, tz) is a galois branched covering of BP2, and one has

in this setting that all branching orders are n . Thus

2-E(,-l)£j..Li = 2-(,-I)(2p£ri;)=2-(1-I)r„,
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and so Theorem 6(2) holds iff 2 - (1 - l/n)rPj < 0 iff (b) holds. Similarly one
has that

-»-eH)-eH)-eH)«-«
= 2-(l-±) l#QLa-r#PLa + YEj-L'\ =2-(l-^)d(La),

and so Theorem 6(1) holds iff 2 - (1 - l/n)S(La) < 0 iff (under the as-
sumption that (b) holds) (c) holds. Clearly Theorem 6(3) is the same con-

dition as (a) above. Finally Theorem 6(4) holds automatically by the fact that

each component of n~x(Ej) is a section of Sj: 77(A, tz) —> SCj (see [4]) so

g(Ej) = s(SCj) > 0 by (b).
We remark that conditions (1), (2) of Theorem 6 are necessary for nefness

of T*X. Since for 77(A, n) (4) holds automatically, and since for 77(A, n),

L'a-L'a = (l/na) deg(7i|o, )L'a • L'a , we have our equivalence.
a

Example 4.2. In [4] Sommese proves density of the Chern ratios c2(S)/c2(S)

in the interval [1/5, 3] for the class of minimal compact complex surfaces S

of general type. His method of exhibiting density in the interval [2, 3] relies

on Hirzebruch's surface 77(A, 5) where A is the ^4i(6) arrangement of lines

in P2 (see [2, 4]). One has c\(H(A, 5)) = 3c2(77(A, 5)) and also that there is
a fibering /: 77(A, 5) —> C where C is a Riemann surface of genus g(C) = 6 .

For any branched covering F: C -» C, having branch locus in C that is dis-
joint from the image in C under / of the set where / is not of maximal rank,

Sommese shows that the surfaces S = F*(H(A, 5)) = C xc 77(A, 5) have

Chern ratios c2(S)/c2(S) dense in the interval [2, 3]. 77(A, 5) has ample

cotangent bundle [4], and F*(77(A, 5)) branch covers 77(A, 5) with ramifica-

tion set in F*(77(A, 5)) consisting of the fibers Bj over the ramification set in

C . Each Bj has genus 76 [4], and clearly Bj • 77, = 0. By Theorem 4 the sur-
faces F*(77(A, 5)) have nef cotangent bundle. However, T*F*(H(A, 5)) is

not ample as is easily seen. First note that TF*(H(A, 5))\B « TBj®NBj. Let

7? be the curve in P(T*F*(H(A, 5)) corresponding to 77, and NBj . Then for

£ = Zt-F'(H(a,5)) one has that £~> -7? = NBj-Bj = 77, • 77; = 0. Thus {-7? = 0,
giving that T*F*(H(A, 5)) is not ample. This gives a class of surfaces X with

T*X nef but not ample, and c\(X)/c2(X) is dense in the interval [2,3].

Exampie 4.3. The F*(H(A, 5)) of Example 4.2 can also be seen as an exam-

ple of Theorem 3. F*(77(A, 5)) branch covers 77(A, 5) that in turn branch

covers BP2. Since F: C -> C need not be galois, F*(H(A, 5)) need not be

galois over BP2 . But Theorem 3 is applicable in this setting. One checks from

the facts given for 77(A, 5) in Examples 4.2 that Theorem 3(l)-(3) hold and

T*F*(H(A, 5)) is again nef.

Example 4.4. Let A = A! U • • • U A/v be a general arrangement of pencils in

P2 ; blowup all the points in the base loci to obtain BP2 . Let fi'■■: R,■. -> P1 be
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any Riemann surface that branch covers P1 having as branch locus for fi the

set 7t,(AJ) = {ni(C'i})\Cij £ A,} , where 7t, : BP2 -> P1 is the natural projection

associated to the pencil F, belonging to A,, C'tj is the proper transform of

Cy,and AJ = {q;|Cy€'A,}.
Construct X contained in M := Rx x R2x ■ ■ • x RN x BP2 by requiring that

X = {(xx ,x2,... ,xN,p) £ M\nt(p) = fi(Xi) for■ i = 1,..., N}.   X is a
smooth surface. This follows from the fact that the matrix

-dfi       0 0       _dnx_       dnx -

dxx dx dy

0      ®Jj 0       -—    - —
dx2 dx dy

0       ...     ^A      o       _dli        dn>
dxt dx dy

0 dfN       d7lN       d7lN

dxN        dx dy -

is of maximal rank. The left most N by N minor is of nonzero determinant at

(xx, x2, ... , xN, p) unless p £ C'i}- for some C-.- e A' and dfi(Xi)/dXi = 0.

In the case that the left most minor has determinant 0, we have that since A

is a general pencil, at most two Cy , say C\. and C'u , can intersect at p and

they would meet transversely. Since C[j and C'u are nonsingular fibers of 77,

and 77/, respectively, one has that

(d nt    9 77, \

1  1   *o   «■"■
dx     dy I

This compensates for the zero terms dfi(Xi)/dXi and dfI(xI)/dxi and gives
maximal rank N, so X is smooth.

Now X branch covers BP2, with 7t: X -> BP2 being the restriction to X

of the projection of Af onto the factor BP2 , and 77 is ramified precisely over

A'. This is seen by using the implicit function theorem in conjunction with
the above N x (N + 2) matrix. Since A is a general arrangement of pencils,

let 7ti x 7t2 x ■ • • x 7tfc: BP2 —> P1 x P1 x • • • x P1 be of maximal rank except

at EC union finitely many points. If g(Ri) > 1 for i = I, ... , k then
the Stein factorizations SCj (of 77, o 77) factor through 7?, to P1 giving that

g(SCi) > g(Rj) > 1 for i = I, ... , k . One then concludes by maximality of
rank of nx xn2x ■ ■■ xnk that if Cj £ A' then Cj must map onto say the z'th

factor P1 for some i = I, ... , k. Hence each irreducible component Cj of

n~x(Cj) maps onto SCj over the z'th factor P1 and e(Cj) < 0. However, in

order to guarantee that each Cj e 7t_1(FC) has e(Cf) < 0, we must assume

that g(R{) > 1 for i = 1,..., k, k+1, ... , N. Since each Cj has nonpositive
self-intersection, all the hypotheses of Theorem 5 hold. We conclude that if each

genus g(Rx), g(R2), ... , g(RN) is positive then T*X is nef.
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