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ABSTRACT. In a previous paper we characterized those H(A, n) (compact com-
plex surfaces constructed by Hirzebruch) that have nef cotangent bundle. In this
article we extend the methods to study more general branched coverings with
regard to nefness of their cotangent bundles.

1. INTRODUCTION

We first develop the notation. Let A = {L,,..., L} be an arrangement
of k lines in P? = P%(C). For p € P?, r, is the number of lines in A
containing p. BP? is the blowup of P2 at all p with r, > 3. Let L) denote
the proper transform of L; in BP? and A’ = J{L)}. One defines ¢; by ¢; =
cardinality{p € P?|r, = j}. Let E; denote the exceptional curve in BP? over p;
with r,, > 3, and let #;: BP? — E; be projection. For n: X — BP? a branched
covering, s;: X — SC; will be the Stein factorization of m;on: X — E;.

For any vector bundle E over a base manifold M, the projectivization
P(E) is a fiber bundle over M, with fiber P,(E) over ¢ € M given by
P,(E) = (E; \ 0)/C*. There is a tautological line bundle ¢ over P(E) sat-
isfying (i) elp,e) = O(1)p,(5)Vq € M and (ii) the projection pg: P(E) - M
gives pg-(¢g) ~ E. In the case that £ = T*M we will denote pr = pr.y
simply by p.

Recall that the vector bundle E is nef if & over P(F) is nef, that is,
¢1(€g) - C > 0 for all effective curves C in P(E).

In what follows, g(C) and e(C) will denote the genus and euler number,
respectively, of a curve C . For further development see [4, 5, 1].

The problem approached here will be: given a branched covering n: X — Y
of compact complex surfaces, find conditions on Y along with the ramification
set of = in X sufficient to guarantee that 7*X is nef. Cases handled include:
(i) Y =BP? and (ii) T*Y is nef.
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2. NEF COTANGENT BUNDLES

In this section we prove the main theorems, including the following working
theorem.

Theorem 1. Let X and Z be compact complex manifolds with dimc X = 2,
dimcZ > 2, and with Z having nef cotangent bundle. Let n: X — Z be
a holomorphic mapping with X' := {x € X | Ti|x is not of maximal rank}.
Assume that X' =\JBjUqUq,U---Uqn, where the B; are irreducible, smooth
curves and the qy, q2, ..., qn are points. Then X has nef cotangent bundle if
Bj-B;j <0 and e(Bj) <0 for each B; in |JB;.

Proof. Assume that B;-B; <0 and e(B;) <0 foreach B; in |JB;. We prove
nefness of T*X .

The mapping n: X — Z induces n,: TX — TZ, which in turn induces
II: P(T*X) —» P(T*Z). Let & be the tautological bundle over P(T*X), and
let & be the tautological bundle over P(7*Z). Il has indeterminacy set that
is contained in p~!(4) where p: P(T*X) — X is projection and 4 = |JB; U
@ U---Ugn.

Let C be an effective irreducible curve in P(7*X). For T*X to be nef we
show that C ¢ 1 < 0. This is accomplished in three cases.

Case 1. Suppose that p~!(4) 2 C. Let v: nC — C be the normalization
of C. In this setting [Tov: C — P(T*Z) extends to be well defined and, by
Lemma 2, we have that (ITo v)*(&;!) 2 v*(¢!) + D where D is an effective
divisor on #C. So

C-&'=nC-v*¢&") =nC-(Mov)* (&) - D)
= deg(ITov)(Mov)(C) &' ~nC - D <0.
The last inequality follows since ITov(C) is a curve in P(T*Z), &, is nef, and
D is effective on nC .
Case 2. Suppose that C is a fiber of p (and therefore C = P!). Then
C-&t=—1 since & .= 0(1).
Case 3. Suppose C is contained in p~!(4) but is not a fiber of p. Then

p(C) = B; for some j. For v: nC — C the normalization of C, one has that
pov:nC — p(C). One has the vector bundle maps

0— V*(él"|c) — V"p"(TX|p(C))

and

0—v*p*Tp(C) — u*p*(TX|p(C)) - v*p*Np(C)— 0.
Hence one of the sequence of sheaves (2.1) or (2.2) must be valid.
(2.1) 0— vt s v p*Tp(C) - Z, — 0,
(2.2) 0— v 5 v*p*Np(C) - Z, —» 0

where Z; and Z, are sheaves with finite support on nC. By letting M, =
v*p*Tp(C) and M, =v*p*Np(C), we rewrite (2.1) and (2.2) as

(2.3) 0 v M, — Z, 0.
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By utilizing the long exact sequence associated to (2.3), along with Riemann-
Roch, one concludes that

deg(pov)a(Tp(C)) - p(C),
deg(p ov)ei(Np(C)) - p(C).
e(B;) < 0 by our hypothesis. And similarly
p(C) - p(C) = Bj - B; < 0 by hypothesis.

. So & -C >0 and ¢ is nef, giving that

Q@) - C = € - nC < er(My) - nC = {

Now ¢i(Tp(C))-p(C) = e(p(C)

we have that ¢;(N(p(C)) - p(C)
Therefore, in all cases & l.Cc<
T*X isnef. O

In the setting of Theorem 1 we prove

Lemma 2. For C contained in P(T*X) with C not contained in p~'(A), let
v: nC — C be normalization. Then

(Mov)*& ) =v* ' +D

where D is an effective divisor on nC .

Proof. First note that if g: L; — L, is a holomorphic mapping of complex
line bundles over a curve (which we take to be) #C, then L, = L, + D, where
D, is the effective divisor on #C induced by the vanishing of the mapping
g. Nextwelet L; = v*¢é;! and L, = (o v)*(&;') where ITov extends
to be well defined on nC as C is not contained in p~!(4). Observe that
n.: TX — TZ induces the mapping =.: &/ - & ' which in turn induces
e v*Er = (Mov)*(&;") . Finally we take g to be the mapping m,: v*¢ ! —
(ITov)*(&'), giving the lemma with D:=D,. O

o I

Theorem 3. Let A be an arrangement of k > 3 lines in P2 with t, = 0.
Assume there are at least two points p;, i = 1,2, with r, > 3. Let BP? be
the blowup of P? at each point p; with r,, >3, and let E; be the exceptional
curve over p; with n;: BP* — E; projection. Let L be the line containing p,
and p; in P?, and let L' be its proper transform in BP? .

Let m: X — BP? be any branched covering of BP? with branch locus con-
tained in A'UE\U---UE,UL' where n='(A'UE\U---UE,UL') has irreducible
components that are smooth. If n: X — BP? satisfies

(1) Foreach L, € AU{L}, e(f,a) <0, and f,a-za < 0 for each irreducible
component L, of n1(L);
(2) e(Cj) <0 for each irreducible component C; of n=Y(E;), j=1,...,n;
(3) g(SCi))>1 for i=1,2 where s;: X - SC; and p;: SC; — E; is the
Stein factorization of mion: X — E;;
then T*X is nef.
Proof. Define Z = SC, x SC, and construct the mapping s: X — Z given by
s = 51 x 55 where 5;: X — SC; is the Stein factorization of m;om: X — E;.
Then since (7; x m3)om = (py x pa)o(s; xs;) and 7y x my: BP2 — E| x E, is bi-
holomorphic on BP?\|JE U---UE,UL', the singular set of s; xs, is contained
in the set 7~ (A’UE,U---UE,UL") = UL;un~'(E,)U---un~'"(E,)un—"(L).

By hypotheses (1) and (2), e(B;) < 0 for each B; that is contained in the
set ULjUn—1(E;)U---Un~Y(E,)Un~!(L"). (1) gives that B;-B; <0 for B
contained in the set | Ljurn~'(L’). If B, is contained in n~!(E)U---Un~'(E,)
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then B;- B; < 0, since if n; is the branching order of n along B; then
B;- B < (l/nj)deg(nIBj)Ej2 < 0. Now (3) gives that T*Z is nef. Apply
Theorem 1 to the mapping s: X — Z to conclude that 7*X isnef. O

Remark. One can drop the extra hypotheses on L (the line of collinearity con-
taining p; and p,) of Theorem 3 and still conclude that 7*X is nef, provided
that there is a third point p;, noncollinear with p; and p,, also satisfying
g(SC3) > 1 where s3: X — SCj is the Stein factorization of n3om: X —
E;. The proof is similar to that of Theorem 3 if one lets s be the mapping
81 XS2XS32X—>SC| XSC2XSC3.

Theorem 4. Let X and Y be compact complex surfaces with Y having nef
cotangent bundle, and let m: X — Y be a branched covering with ramification
set \|JBj in X, where we assume that the B; are irreducible and smooth. Let
U C. be the branch locus of m in Y. Then

C, - C, <0 for each C, in the branch locus in Y
= Bj - Bj <0 for each B; in the ramification set in X
= X has nef cotangent bundle .

Proof. Assume that C, - C, < 0 for each C, in the branch locus in Y. Let
n*(Ca) = Y i Mok Bok - Then

Baj+m*(Co) = Baj+ Y Mok Bk = NajBaj - Baj + Baj* Y NakBak
k k#j
= deg(”'g j)Ca - Co

whence

(2.4) B+ Baj = g} deg(n|y )Co+ Ca— g Baj- > nokBak <0,
k#j
giving the first implication.

Assume that B;-B; < 0 foreach B; in the ramification set. We prove nefness
of T*X . Observe that for each B; in the ramification set e(B;) < 0, otherwise
e(n(B;)) > 0 in Y, which contradicts that T*Y is nef. Apply Theorem 1 to
n: X —» Y to conclude that T*X isnef. O

Next we extend our viewpoint to arrangements of pencils of curves.

Definition. Let P; be a pencil of curves in P? and A; = {C,-,-|j =1,...,k}
be an arrangement of smooth curves in P; with each C;; intersecting each C;;
transversely (only) in the base locus (consisting of isolated points). We label
the base locus of P; by BLP;.

(1) An arrangement of pencils A is defined to be A =JA; with each A; as
above.

(2) A general arrangement of pencils is defined to be an arrangement of pencils
A =JA; satisfying:

(a) BLPNBLP, =@ if i # j.

(b) After blowup of all points in |JBLP; to get BP? and letting EC be
the resulting set of exceptional curves and A’ be the arrangement of proper
transforms C/; of the curves C;; in A, we have that EC UA’ consists of
smooth curves meeting transversely in normal crossings.
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(c) For each i and each j, Cj; is a nonsingular fiber of z; .

(d) There are k > 3 pencils, say P,, P;, ..., P, with AD AjUAU---UA;
satisfying that 7; x 7y x --- x % : BP2 — P! x P2 x ... P! is of maximal rank
2 on BP?\ EC except possibly at finitely many points q;, g2, ..., qv. Here
each m;: BP? — P! is the holomorphic mapping associated to the pencil P;.

(e) For all i, no point of C;; lies in the base locus of P; for I #i.

Theorem 5. Let A be a general arrangement of pencils in P*. Blowup all points
in the base loci to obtain BP?. Let n: X — BP? be any branched covering of
BP2 with branch locus in BP? contained in EC UA' and ramification set in
n~Y(ECUA') having irreducible components that are smooth.

Let n;: BP2 — P! be the natural holomorphic projection associated to each
pencil P;. Let s;: X — SC; and p;: SC; — P! be the Stein factorization of
mion: X » P'. Then T*X is nef if:

(1) For the projections m,, ..., mx with Ty x 1y x --- x ;. BP2 — P! x P! x
-+ x P! of maximal rank on BP?\ {EC U finitely many points}, we have that
the euler numbers e(SC;) <0 for i=1,...,k

(2) For each Cj € ECUAN' and each irreducible component CA',- of n71(Cj)
one has that e(C;j) <0 and C;-C; <0.

Proof. Define Z = SC; xSC, x---xSC, and construct the mapping s: X — Z
given by s = §; x 5, X --- x § where 5;: X — SC; is the Stein factorization
of m;om: X — P!, Then since (m; x My X - X M) o = (P X pg X -++ X
Pr) o (81 X 83 X --- x 8 ), the singular set of s, x $, X --- x §; is contained in the
singular set of (m; x 7y x --- x M) om U~ (EC). Therefore the singular set
of §; x 83 X --- x § 1is contained in 77 !(g; U---Ugn)U (U E‘j). (1) gives that
T*Z is nef and (2) allows the application of Theorem 1 to conclude that 7*X
isnef. O

Remark. See Example 4.4 for a construction of a class of surfaces to which we
apply Theorem 3.

3. APPLICATIONS

As an application of Theorem 3 we study galois branched coverings. Recall
that a branched covering n: X — Y is galois if the deck transformations act
transitively on fibers of n.

We begin by setting up the notation. Let A be an arrangement of lines in
P2 with at least 2 points p; and p, having r, >3 for i =1,2. BP? is the
blowup of P? at each point p; with r, > 3, and let E; be the exceptional
curve over p;. Let L be the line containing p; and p, in P?, and let L' be
its proper transform in BP2.

Let m: X — BP? be a galois branched covering that is locally of form
(u, v) - (u", v™) with branch locus in BP? contained in A’U(JE,). The
line L; € A’ is assigned branching order n;, where n; is the branching order
for each component f,ﬁ- of n=!(L!). E; is similarly assigned branching order
m; , where m; is the branching order for each component E; of n~!(E;).

Let the five parameter classes be given as follows:

(i) o parametrizes L, € A’U{L'};

(ii) { parametrizes L] € A’;
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(ili) j parametrizes E; € EC := the set of exceptional curves in BP?;

(iv) given o, B parametrizes pg € PL, where PL, := {ps € L,|3 two lines
L, Lye AN\ L, with Lin L} = pg};

(v) given a, y parametrizes p, € QL, where

QL, := {py € L|3i with i # a with p, € Lin L] and p, ¢ PL,}.

For p, € QL, with p, = LN L, we let n, := n;. For pg € PL, with
pp=LiNL; let

M .= the least common multiple(n;, ny)
where n; and n; are the respective branching orders of L] and L;.

Theorem 6. Let A be an arrangement of lines in P? with at least two points p,
and p; having r,, >3 for i =1,2. Let L be the line containing p, and p,
in P2, and let L' be its proper transform in BP?. Let n: X — BP? be a galois
branched covering that is locally of form (u, v) — (u*, v™) with branch locus in
BP? contained in A'U(JE;) and with n='(A'U(UE;)UL') having irreducible
components that are smooth. Then, in the notation of the above paragraphs,
T*X is nefif

1 1 1 ,
— R - = - . <
=% (05) - 3 (o) ()8t
PyGQLa PﬂePLn J

foreach L, e AU{L}.

(2) 2-2,(1-1/n))E; - L; <0 for each E; an exceptional curve.

(3) Each L; in A is blown up at least once.

(4) g(SC)) is positive for i = 1,2 where s;: X — SC; is the Stein factoriza-
tion of miom: X — P,
Proof. This is a direct result of Theorem 3 after one computes that

e(L,) = (deg|z,) (2‘ 2 (1—%)

pyEQL,
-5 (1ma) S (- )en)
e(Ej) = (degn|il_)( Z( )E Lf.) ,

and :
LI < —det(np, )L, - L, asin (2.4).
Here n, =1 if L,=L and L ¢ A. See Hofer’s dissertation [3] for similar

calculations. The two euler numbers are negative by (1) and (2) of the theorem.
L -L! <0 by (3) and the fact that L’ has been blown up at least twice. O

Remark. There are many situations where hypothesis (4) of Theorem 6 holds
naturally. See Example 4.1.
We give similarly an application of Theorem 4 in the galois setting.
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Theorem 7. Let T*Y be nefand let n: X — Y be a galois branched covering
having ramification set |)B; in X and branch locus \JC, in Y. We assume
that the Bj are smooth and meet transversely in at most normal crossings and
that the C, are smooth. We further assume that n can be locally represented
by coordinate charts of the form (u,v) — (u", v™). Then

C,-C, <0 for each C, in the branch locus in Y
& Bj - B; <0 for each Bj in the ramification set in X
& X has nef cotangent bundle .

Proof. Under the assumptions that 7z is galois and locally of form (u, v) —
(u",v™) and the C, are smooth, it cannot happen that B,; meets B, for
J # k where B,; and B, are irreducible components of n*(C,). (If p €
B,j N By and (u, v) is a coordinate chart centered at p with n of form
(u,v) — (u", v™) =: (4, B), then the only local branching occurs at u = 0
and v = 0. Thus B,; is given locally by, say, u = 0 and then B, is given
by v = 0 (and on our chart » = m). Then n({u = 0} U{v =0}) = {4 =
0} U {B = 0}, which contradicts that C, is smooth.) Hence (2.4) gives that
Byj+ Baj = n} deg(n] 5,)Ca* Ca. So in this setting By - By, < 0 if and only if
C,-C, <0, giving the first equivalence.

Theorem 4 gives that if B; - B; <0 for all curves B; in the ramification set
then T*X is nef. It only remains to show the converse. We adapt a splitting
lemma of Sommese [4]: if B; is smooth and contained in the ramification set
of m, then there is a splitting TB;®NB; =~ TX | 8 The splitting is obtained by

utilizing the natural sequence 0 — TB; —» TX | 5 NB; — 0 and producing
a sub line bundle L of TX [ p. that projects onto NB;. L is the unique

line bundle contained in the annihilator of 7*dA4 = nu""'du and n*dB =
mv™=!dv . Here (u, v) are local coordinates in X with B; being given locally
by u =0, and (4, B) are local coordinates in Y with 4 =u" and B =v™.
Once we have this splitting, B; and NB; determine a curve C in P(7T*X) and
&'-C=NBj-Bj=B;-B; <0 since & - C is nonnegative by our assumption
that T*X isnef. O

4. EXAMPLES

Example 4.1. In [5], H(A, n) with k > 3 was shown to have nef cotangent
bundle iff

(a) For each L € A, L is blown up at least once (in obtaining BP?).

(b) If n =2 then 13 =#{p|r, =3} =0.

(c) Forall L€ P2, §(L)#2,and if n =2 then 6(L) # 3 where §(L) is
defined as the cardinality of the branch locus in L’ of n|n_,( Ly Y (L)— L.

Theorem 6 gives the sufficiency of (a), (b), and (c) for nefness of T*H(A, n).
This follows since H(A, n) is a galois branched covering of BP?, and one has
in this setting that all branching orders are ». Thus

1 / 1 , 1
2'Z(l"n_,>Ef'L"=2_<l_E) (ZEj.L,.) =2—(1—;)er,
1 1
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and so Theorem 6(2) holds iff 2 — (1 — 1/n)r,, < 0 iff (b) holds. Similarly one
has that

= 2 (=5)- 2 (o) -Z0-5) 5o

py€QL, v PpEPL, j

- % (05) - 5 (0 2 (s

pyEQL,

—2- (1—;‘;) (#QLQ+#PL,,+;Ej-L;) =2- (1—%)6@0),

and so Theorem 6(1) holds iff 2 — (1 — 1/n)d(L,) < O iff (under the as-
sumption that (b) holds) (c) holds. Clearly Theorem 6(3) is the same con-
dition as (a) above. Finally Theorem 6(4) holds automatically by the fact that
each component of #~!(E;) is a section of s;: H(A, n) — SC; (see [4]) so
g(Ej) = s(SC;) > 0 by (b).

We remark that conditions (1), (2) of Theorem 6 are necessary for nefness
of T*X . Since for H(A, n) (4) holds automatically, and since for H(A, n),
E{, . E{, = (1/ng) deg(n|z, )L!, - L] , we have our equivalence.

Example 4.2. In [4] Sommese proves density of the Chern ratios ¢Z(S)/c2(S)
in the interval [1/5, 3] for the class of minimal compact complex surfaces S
of general type. His method of exhibiting density in the interval [2, 3] relies
on Hirzebruch’s surface H(A, 5) where A is the A4;(6) arrangement of lines
in P2 (see [2, 4]). One has c}(H(A, 5)) = 3c2(H(A, 5)) and also that there is
afibering f: H(A, 5) — C where C is a Riemann surface of genus g(C) = 6.
For any branched covering F: C’ — C, having branch locus in C that is dis-
joint from the image in C under f of the set where f is not of maximal rank,
Sommese shows that the surfaces S = F*(H(A, 5)) = C' x¢c H(A, 5) have
Chern ratios c?(S)/c2(S) dense in the interval [2, 3]. H(A,5) has ample
cotangent bundle [4], and F*(H(A, 5)) branch covers H(A, 5) with ramifica-
tion set in F*(H(A, 5)) consisting of the fibers B; over the ramification set in
C'. Each B; has genus 76 [4], and clearly B;-B; = 0. By Theorem 4 the sur-
faces F*(H(A, 5)) have nef cotangent bundle. However, T*F*(H(A, 5)) is
not ample as is easily seen. First note that TF*(H(A, 5))| B~ TB;j®NB;. Let
R be the curve in P(T*F*(H(A, 5)) corresponding to B; and NB;. Then for
& =éT'F‘(H(A,5)) one has that f-l ‘R = NBj°Bj = Bj'Bj =0. Thus £:R=0,
giving that T*F*(H(A, 5)) is not ample. This gives a class of surfaces X with
T*X nef but not ample, and c?(X)/c2(X) is dense in the interval [2, 3].

Exampie 4.3. The F*(H(A, 5)) of Example 4.2 can also be seen as an exam-
ple of Theorem 3. F*(H(A,5)) branch covers H(A, 5) that in turn branch
covers BP2. Since F: C' — C need not be galois, F*(H(A, 5)) need not be
galois over BP2. But Theorem 3 is applicable in this setting. One checks from
the facts given for H(A, 5) in Examples 4.2 that Theorem 3(1)-(3) hold and
T*F*(H(A, 5)) is again nef.

Example 44. Let A = A U---U Ay be a general arrangement of pencils in
P2 ; blowup all the points in the base loci to obtain BP?. Let f;: R; — P! be
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any Riemann surface that branch covers P! having as branch locus for f; the
set m;(A}) = {ni(C{j)|C,~,~ € A;}, where m; : BP?2 — P! is the natural projection
associated to the pencil P; belonging to A;, C] ; is the proper transform of
Cij , and Ai = {CzIJICU € A,} .

Construct X contained in M := R; x R; x --- x Ry x BP? by requiring that
X ={(x,x2,...,xn,p) € M|mi(p) = fi(x;) for i=1,...,N}. X isa
smooth surface. This follows from the fact that the matrix

- 0 fi om, omy 1
ax, 0 0 ax  dy
95 0 _9m _om
dx) ox oy
Bf, (97[,‘ 371’,‘
O 5 Y T e
0 .. .. O _dmy _om
L dxXN dx dy |
is of maximal rank. The left most N by N minor is of nonzero determinant at
(x1,X2,..., XN, D) unless p € C{j for some C{j € A’ and 9 fi(x;)/0x;=0.

In the case that the left most minor has determinant 0, we have that since A
is a general pencil, at most two C] ;»say Cj; and Cj;, can intersect at p and
they would meet transversely. Since C| ; and C 1, are nonsingular fibers of =;

and =, , respectively, one has that

dx 9y
det am; 6—7[1_ #0 atp.
ox Oy

This compensates for the zero terms 9 f;(x;)/8x; and 9 f;(x;)/8x; and gives
maximal rank N, so X is smooth.

Now X branch covers BP?, with n: X — BP? being the restriction to X
of the projection of M onto the factor BP?, and = is ramified precisely over
A’. This is seen by using the implicit function theorem in conjunction with
the above N x (N + 2) matrix. Since A is a general arrangement of pencils,
let 1y x my x --- x m: BP2 - P! x P! x ... x P! be of maximal rank except
at EC union finitely many points. If g(R;) > 1 for i = 1,..., k then
the Stein factorizations SC; (of =m; o n) factor through R; to P! giving that
g(SCi) > g(R;))>1 for i=1,..., k. One then concludes by maximality of
rank of m; x my x --- x m thatif C; € A’ then C; must map onto say the ith
factor P! for some i =1, ..., k. Hence each irreducible component CA',- of
n~1(C;) maps onto SC; over the ith factor P! and ¢(C;) < 0. However, in
order to guarantee that each C; € n~!(EC) has ¢(C;) < 0, we must assume

that g(R;))>1fori=1,...,k,k+1,..., N. Sinceeach C; has nonpositive
self-intersection, all the hypotheses of Theorem 5 hold. We conclude that if each
genus g(R;), g(Ry), ..., g(Ry) is positive then T*X is nef.
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