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Abstract. Let f be an element of F[X], the free associative algebra over a

field F and n the maximum of the degrees of the variables and the multi-

plicities of the degrees in /. A partial ordering on the homogeneous elements

of F[X] is defined such that if / is homogeneous and char F\n\, then /

can be decomposed into a sum of two polynomials fo and fx such that for

0 < m < n , fo is symmetric or skew symmetric in all its arguments of de-

gree m depending on whether m is even or odd and fx is a consequence of

polynomials of lower type than /. Osborn's Theorem about the symmetry of

the absolutely irreducible polynomial identities is obtained as a corollary. The

same holds in the free nonassociative algebra. The proofs are combinatorial.

0. Introduction

In [2] Osborn introduced a partial ordering on the free nonassociative alge-

bra F(X) over a field F and proved the following interesting result: if 77 is a

positive integer with char F\n\ and / is an identity of a not necessarily asso-

ciative algebra A over F such that A has no identity of type lower than / in

the partial ordering, then / is symmetric or skew symmetric in its arguments
of degree 77 depending on whether 77 is even or odd. This theorem was used

in [1] to determine the identities of degree 2 77 of the space of 77 x 77 symmetric

matrices; however, the assumption that A has no identity of lower type limits

the use of the result in many cases. In this paper we remove the restriction that
A has no identities of lower type and consider polynomials at large, not only

polynomial identities. Osborn's Theorem follows as a consequence.

Throughout the paper F always denotes a field. The polynomials are in the

free associative algebra F[X], where X is a set of countable noncommuting

indeterminates xx, x2, ... over the field F . All identities mentioned are ho-

mogeneous weak identities (i.e., polynomials that evaluate to zero on some fixed

subspace V of an algebra A) except when otherwise noted.

1. A PARTIAL ORDER,  A-OPERATORS, AND WEAK   fi-IDEALS

Following Osborn [2, p. 78] we introduce a partial ordering on the set of

homogeneous polynomials in F[X], the free associative algebra in the non-

commuting variables X = {xx, x2, ...} . If p(xx, ... , xm) is a homogeneous
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polynomial of degree 77, as in [3], we say that p is of type [nx, ... , nm] if

tij is the degree of Xj in p and nm ^ 0 but nj = 0 for j > m. De-

fine [[tzj , ... , 77m]] to be [«,,, ... , 77,J, where «,, > nh > ••• > nim and

{77,,,..., rtim} = {ni,..., nm\ as multisets. Let p' be a homogeneous poly-

nomial of degree 77' and of type [n[,..., n'm,]. If

[[n[,ri2, ...,n'm,]] = [n'jx,n'j2,... , n'jj

then p is lower than p' in the partial ordering if and only if either (i) 77 < 77' or

(ii) 77 = 77' and itjk > n'jk for the first integer k such that »,t ^ n'jk ; otherwise,

the two polynomials are not comparable. If an integer 77; is repeated k times,

we shall denote this by an exponent; for example, [3, 22, l3] means [3, 2, 2, 1,

1,1].
Let f(xx, x2, ... , Xi, ... , Xj, ... , xm) £ F[X] be a homogeneous polyno-

mial and Xi, Xj have degree 77,, nj in /, respectively. Then the polynomial

/ [xx, ... , Xi, ... , Xj, ... , xm)

(1) := / (xx, ... , Xi + Xj, ... , Xj, ... , xm)

— J (-"-I, ■ ■ ■ , Xj, ... , Xj, ... , xm) + /1 + • • • + Jm >

where fk is the homogeneous component of fi' and Xj, Xj have degree n,-k ,

nj + k in fik , respectively. Each fik is obtained by setting k x,'s to be Xj in

/. Following [3, p. 9] we define

Ak(Xi,Xj)f:=fk,    k= 1, 2, ... , «/,        A°(Xj,Xj)f:= f.

The mapping Ak is called a A-operator (or a derivation) and Afc(x,-, Jt7-)/ is

called a partial linearization of /. If 77, > 0 and /i; = 0 (which is allowed in

the above definition) then A^x,, xf)f is of degree tj, - 1 in x, and 1 in Xj.
Therefore, if enough variables of degree 0 were present then one could linearize

/ using successive A-operators. We denote by Afi the set of all polynomials in

F[X] that can be obtained from / by means of repeated A-operations

A/ = {g £ F[X] I g = A* (*,,, xkl) ■ ■ ■ AHxis, xks)f}.

It is well known that the set T(A) of all polynomial identities of an fi-algebra

is a T-ideal, i.e., an ideal of F[X] that is invariant under all endomorphisms of

F[X]. However, this is no longer true for weak identities. Hence we introduce

the concept of weak fi-ideals.

Definition 1. An ideal W of F[X] is called a weak T-ideal if W is invariant

under every linear mapping x, i-> 2D a,7x7 for a,7 £ F.

If S is a subset of F[X] then the smallest weak fi-ideal containing S in

F[X] is called the weak T-ideal generated by S and denoted by (S).
One basic example of weak T-ideal is the ideal T(A, V) consisting of all

weak polynomial identities on a subspace V of an algebra A .

Using a standard Vandermonde argument (e.g., [3, Theorem 5, p. 12]) one

can prove

Proposition 1. Let /(..., x,,..., xv, ...) £ F[X] be a homogeneous poly-

nomial of type [... , n{, ... ,Hj, ...].   If \F\ > nt  then Ak(Xj, Xj)f £ (f),
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k = 0, 1, ..., i%i. In particular, if f £ T(A, V) then Ak(Xj, Xj)f £ T(A, V)
for k = 0,1,... ,tii.

Let f(xx, ... , x„) and g(xx, ... , x„) be homogeneous polynomials of

F[X]. We shall say that g is a consequence of (or comes from) the polynomial

f if g belongs to the vector space Span {Af}.

Since a partial linearization of an identity / is not necessarily an identity,

the polynomials in Af need not be identities either. But from Proposition 1,

if F contains enough elements then Af lies in the fi-ideal (/), and hence if

g comes from / then g is a linear combination of identities in (/).

2. The main results

As in [3], the free associative algebra F[X] has a decomposition into a direct

sum of subspaces Ft"1 • ■•■•"*lLY] consisting of the homogeneous polynomials of

type [nx, ... , nk]. In this section we give a decomposition of the elements of
yl"\,-,nkl[X], which is useful in the study of identities.

Theorem 1. Let n be a positive integer and let p be a homogeneous polynomial

with coefficients in afield F of characteristic not dividing n\. Let x and y be

arguments of degree n . Define px by

px :=p(... ,y, ... ,x, ...)-(-l)np(... , x, ... ,y, ...).

Then the following statements hold:

(1) The polynomial px comes from a polynomial ofi lower type than p.

(2) Let charF ^ 2. If there exist two variables in p, either of even degree

in which p is skew symmetric or of odd degree in which p is symmetric, then

p = \px comes from a polynomial ofi lower type.

(3) Ifi \F\>2n - 1 and p is an identity, then px is a linear combination of
identities of type lower than p.

(4) If A(y, x)p = 0 then p is either symmetric or skew symmetric in x and
y depending on whether n is even or odd.

Proof. Define

px := a0fin + £ti/«-i H-\- a„-Xfi ,

where ak = (-l)kk\/n(n- l)---(n-k), 0<k<n-l,

fx:=A°(y,x)Ax(x,y)Ax(y,x)p,

h := Ax(y,x)A2(x,y)A2(y,x)p - (") fi,

(2) V   y
fm+x := Am(y, x)Am+x(x, y)A2(x, y)p

( n \ f     ( n - 1 \ f (n-m + l\f

~\m)ix-\m-l)h-l.       1       )U

The polynomial px comes from Ax(y, x)p , which is of lower type than p .

If |F| > 2n - 1 and p is an identity, then for each i, i = I, ... , n,

fi £ (A1 (y, x)p) by Proposition 1 and hence px  is a linear combination of
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consequences of lower type identities fi . Thus, to prove statements (1) and (3)

of the theorem, it suffices to show that

(3) p(...,y,...,x, ...) = (-l)np(... , x, ... ,y, ...)+px.

Since Ak(x, y) and Am(y, x) change only the variables x and y, the poly-

nomials p(... , y, ... , x, ...), (-l)"p(... , x, ... , y, ...), and px are of the

same type. So, they are linear combinations of the same monomials. Thus, to

show (3) it suffices to show that for each monomial M, the coefficient of M in

p(..., y,..., x,...) and the coefficient of M in (-1)"/?(... , x, ... , y, ...)+

px are the same.

First we define an equivalence relation on the set of monomials occurring in

p : Mx ~ M2 if M2 is obtainable from Mx by permuting some x's and y's and

leaving the other variables fixed. We denote by [M] the equivalence class of

M. Let 7 be the set of all associative words in x and y involving exactly n x's

and 77 y's. Setting the variables, other than x and y, equal to 1 in an element

of [Af] yields a bijection from [M] to 7 ; so we may write [Af] = {Af, | i e 7}

and, in particular, Af = Mw for some w £ I. Let P^ , k = -1, 0, I, ... , n ,

be the set of all associative words that have n + k y's and n - k x's. Then

7 = 7'°> and 7' := 7(-1> is the set of all associative words in x and y involving

exactly t? + 1 x's and 77 - 1 y's. For i, j £ I' U 7 U 7(1) U • • • U fn), we define

i • j to be the number of positions in which both i and j have a y.

Let Cj be the coefficient of Af, in p and rj be the coefficient of AT, in

p' := Ax(y, x)p . Then for each j £ 7' the total coefficient of Af) in p' will be

the sum of the 77 + 1 coefficients c, where i runs over all those elements of 7

such that i'j — n — l, i.e.,

(4) rj=   YI   c>   ^e/'-
i'j=n— 1

If k = j-w then every i occurring in (4) satisfies either i-w = k or i-w — k+l .

Indeed since j has 77 - 1 elements y's and i - j = n - 1, i has a y in a given

position whenever j does. So in the positions where both j and w have a y ,

i has a y also. Therefore j • w = k implies i-w is at least k. But i has

only one more y than j, so i • w < k + I . Each i £ I satisfying i - w = k

occurs in exactly n - k equations of type (4) for which j • w = k . Indeed i

occurs in (4) iff Af, becomes Af, when replacing one y by an x in Af,; since

/ • w = k, if we put one y in Af, that occurs in the same position in w to be

x to get Mj, then j • w — k - 1 not k . This cannot happen, so we have only

n-k choices and each one produces distinct Af/s, so c, occurs n - k times

in the set of equations of type (4) satisfying j -w = k . Each i £ I satisfying

i-w = k+l occurs in exactly k + 1 equations of type (4) satisfying j -w = k ,

for, this time, we can only choose those y's that occur in the same position in

i and w in order to get j -w = k .

Now we add up all equations of type (4) satisfying j -w = k to get

(5) Y rJ = (" ~ Wk + (k + l)Ck+x,        k = 0,l,2,...,n-l,
j-w=k

where, for 0 < m < n, Cm := YZi-w=m c> > w'tn c' occurring in an equation

of type (4) satisfying j -w - k . Substituting the n equations of (5) into one
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another yields

r -t   ivr if   lyi-il"-1)*    v   r +t   1^-2    (n-2)\C0-(-l)C„ + (-l)     —^—    2.    0 + (-l)      „(„_!)...2
y'*u)=n-l

x  E o + '-^Eo + ̂ Eo-
j-w=n-2 j-w=\ j-w=0

We know that C„ = cw and Co = cw<, where w/ is the word obtained from w

by interchanging all the x's and y's. Thus we have that

Cw- = (-1)"CW + Ct„-Xfin-X +--- + a0fi0,

where ak = (-l)kk\/n---(n-k) and fik = zZj'W=krJ> k = 0, 1,..., n - 1.

Next we show that ]£i=o a'^( *s tne coefficient of the monomial Af„, in px

and, therefore, /3i comes from p'. By the definition of px, it suffices to show

that each fin_k is the coefficient of Mw in fik . This will be proved by induction

on k.
For v, u, u' £ I U 7' U 7<'» U • • • U 7^ we define #(v) := the degree of y

in 77, and we say that u < u' if whenever u has a y in a given position so

does u'. Define u U u' to be the word that has a y in a given position iff u
or u' does (e.g., if u = xxyxyy and u' = yxyxxx, then 77 U u' = yxyxyy).

From the definition we have that if u < t and u' < t then uU u' < t and

#(uuu')<#(t).
Next let us consider fi„-X. Since /j is obtained by setting one x equal to

y in />', the coefficient of Af„, in fi is

7w=      E     r) = Pn-\-
j-w-n-\

Suppose fin-x, fi„-2, ... , fi„^m are the coefficients of Mw in fi , fi2, ... , fm ,

respectively. Now for fin-m-X, putting 777 + 1 x's to be y in A1 (y, x)p yields

the polynomial Am+X(x, y)A'(y, x)p , then putting m elements y's to be x in

Am+l(x, y)A'(y, x)p we get the polynomial Am(y, x)Am+1(x, y)A'(y, x)p. In

Am+1(x, y)A'(y, x)p , the monomial Af, has coefficient Xt = Ylj-t=n-\ ri > since

#0') = "-1 and #(0 = n + m = (77-l) + (777+1). (If j-t < n-l then putting
777+I x's to be y in Af,- cannot yield Af,, which has 71 + 777 y's). Similarly,

in Aw(y,x)Am+1(x,y)A'(y,x)/>, Mw has coefficient pw = E/g/w, t-w=n^,

since #(7) = 77 + 777 and #(to) = n . Thus

(6) m-=    £     (    E    ';)•
(G7C"), t-w~n  ye/', j-t=n-\     J

We claim that

. . {/' € 7' I;' • 7 = 77 - 1 for some t £ 7(m) and t - w = n}
(*)

= {j£l'\n-m-l < j -w < n - I}.

For if j £ I' with j -t = n — 1, #(0 = n + m , and t -w = n , then _/ < 7,
w < t, and jUw < t. Since #(j) = 77-1, 7 • iw < 77 - 1. lfj-w<n-m-2

then jllw < t implies that #(;' U to) < tz + 777. But

w(j Uw) = n-l + (n-j-w)>n-l+n-n + m + 2-n + m+l,
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a contradiction. On the other hand, if j - w = n - k, k = 1, 2, ... , m + 1,

then
#(j Uw) = n-l + n-(n-k) = n-l+k<n + m;

therefore, there exists a word t £ 7(m) such that j uw < t. Since j < t and

w < t, j-t — #(j) = 77-1 and w • t = #(w) = n . This establishes (*). It also

means that rj occurs in (6) iff j-w - n-k for some k with I <k < n-m-l.

Each rj may occur several times in (6). We group the rfs in (6) depending

on j -w - n-k for each k . We claim that

,   ,. each rj with j £ I' satisfying j -w = n - k occurs („\Zkk++\)

times in (6).

Indeed, the number of the occurrences of rj in (6) is exactly the number of

words t £ 7<m) such that t-w = n and j -t = n- I; that is, t £ Tm'1 such that

wis j <t since #(j) = n - 1. Now if w • j = n - k then

#(w \Jj) = n + n-l-n + k = n + k-l.

So the word t obtained by changing m-k + l x's in to U 7" to be y's belongs

to 7(m) and w U j < t; however, the number of choices for such a word t is

2n-(n + k - 1) choose m-k+l, that is, (^~_kk\\) ■ Hence (**) holds and

^=E    E   rJ=(m)    E    rJ+(m~-\)    E    0
t-w=nj-t=n-\ j-w=n-\ j-w=n-2

t (n-m + l\    v-^ V^
+ ■■■ + (    1    )  E n +   E   n-

j-w=n—m j-w=n—m—\

Since fi„_k = zZj.w=n-k 0 >

/?„_„_! =/7„,-  f m)P»-\ ~ {  nn^_ , J/?«-2-f"   "7_     J/3"-""-

Thus, by the induction hypothesis and the definition of fm+x , fin-m-X is the

coefficient of Mw in fim+x . Therefore, Ylakfik is the coefficient of Mw in

px, from the definition of px .
We also know that tv and (-l)ncw are the coefficients of Afu, in

/?(... , y, ... , x, ...) and (-1 )"/>(... , x, ... , y, ...), respectively. Thus (3)

holds. So statements (1) and (3) are proved. The second statement of the

theorem follows easily from (3).

If A(y, x)p = 0 then px - 0 by the definition of px . Hence px = 0, which
implies that p is symmetric or skew symmetric in x and y depending on

whether 77 is even or odd.   □

Since the associativity of F[X] was not used in the proof of Theorem 1,

Theorem 1 is also true for the free nonassociative algebra. The proof is exactly

the same except for the definition of the mapping from [Af] to 7. In this case,

[Af ] consists of monomials having exactly the same distribution of parentheses
and that differ only in the positions of x and y. When all variables other

than x and y are set equal to 1, a monomial in x, y is obtained. Since

the parentheses distribution is always the same, we may therefore drop the

parentheses and thus obtain an element of 7. So again there is a bijection from

[Af] to 7. Thus we have
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Theorem 1'. Let n be a positive integer. Let p be a homogeneous polynomial

F(X), the free nonassociative algebra in the variables X = {xx, x2, ...} over a

field F of characteristic not dividing n\. Let x and y be arguments of degree

n. Define px by

px :=p(... ,y, ... ,x, ...)-(-l)"p(..., x,... ,y, ...).

Then the following statements hold:
(1) The polynomial px comes from a polynomial of lower type than p.

(2) Let charF ^ 2. If there exist two variables in p of even degree in which

p is skew symmetric or of odd degree in which p is symmetric, then p = ^px

comes from a polynomial of lower type.

(3) If \F\ > 2n — 1 and p is an identity, then px is a linear combination of

identities of type lower than p.
(4) If A(y, x)p = 0 then p is symmetric or skew symmetric in x and y

depending on whether n is even or odd.

From Theorem 1' we have

Corollary 1 [Osborn's Theorem]. Let p be a homogeneous identity in a nonas-

sociative algebra A over a field F of characteristic not dividing n\. If A has
no identity of type lower than p then p is symmetric or skew symmetric in its

arguments ofi degree n, depending on whether n is even or odd.

Theorem 1 holds for varieties of nonassociative algebras. Given an element

p in the free algebra of the variety, consider p as an element of the free nonas-

sociative algebra. Equation (3) holds in the free nonassociative algebra and,

passing to the quotient algebra, it holds also in the free algebra of the variety.

Theorem 1 says that for each pair or arguments x, y of degree 77 there exists

a polynomial p' = \(p(... , x, ... , y, ...) - (-l)np(... , y, ... , x, ...)) that

comes from polynomials of lower type such that p - p' is symmetric or skew

symmetric in x, y depending on whether tz is even or odd. In fact, we can

find a polynomial px that comes from some polynomials of type lower than

that of p such that p - px is symmetric or skew symmetric in all its arguments
of degree n , depending on whether n is even or odd.

Theorem 2. Let r be an integer and F be a field with charFfr!. Let V bean

S^-module. Then

1. V = {v £ VI nv = v , V77 £ S"r} + (Ex<i<j<r{v G VI (1, j)v = -v});

2. V = {v £ V I nv = -v , Vtt 6 3"r} + (Ei</<;<r{« e V \ (i, j)v = t;}).

Proof. To prove the theorem we use induction on r. In what follows, we

agree that the product of two permutations is performed from right to left. For

r = 1, the theorem holds trivially. For r = 2, every v £ V has a unique

decomposition
v = {(v + (I2)v) + ±(v - (12)v).

Suppose the result is true for r— 1. We imbed Sfr-X into 3*r as {n £ Sr \ n(r) =

r} . Thus a given 5^-module is also an J^_i -module. Hence by induction,

V = {v £ V\7iv = v,Vn£S"r-X}+ (      YI     {v £V\(i,j)v = -v}\ .
\l<«y<r-l J
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Let v £ V-9'-1 := {v £ V\nv = v ,\/n £ S*r-X} and define

w:=v--    Y   (v-(ir)v).
l<j'<r-l

It suffices to show w £ V^r. We have

w = 7 [v +   E  ("■)"   '
\ KKr-l /

hence for I < j < r - 1,

(jr)w = -   (jr)v + v+       Y       Ur)(ir)v   =w,

l</"<r-l, i?f/

since (jr)(ir) = (ir)(ij), and thus

(jr)(ir)v = (ir)(ij)v = (ir)v ,

using V e fA^-i   Because {(;>) | 1 < 7 < r - 1} generates J^ , we have shown

that w £ V^', completing the proof of Theorem 2(1).

Symmetrically, to prove Theorem 2(2) we define

w':=v'—    Y   (v' + (ir)v'),
l</<r-l

where v' £ {v £ V \nv = -v ,\/n £ S"r-X} . Now we can repeat the proof of

(1) of Theorem 2 step-by-step to show that w' £ {v £ V \nv = -v ,Vn £ 3"r}.

This completes the proof of Theorem 2.   □

Let V = Ft"1''"5- ■'"'][*], and

Wx = Span{/(x,, ... ,xr,yx, ... ,ys, ...)£V\

f is skew symmetric in x, and Xj for some i ^ j}.

Let U be the set of the element f(xx, ... , xr, yx,... , ys, ... , zx, ... , z,) e

V that are symmetric or skew symmetric in some Wj, Wj where i / j and

77je{x,y,...,z}, depending on whether the degree of wt in / is odd or

even. Let Vx = Span U . Then we have

Theorem 3. Let mo = max{Tn, n, ... , u, r, s, ... , t}. If charF\mo\ then

every element fi in V has a decomposition into a sum ofi two polynomials ofi

the same type as fi, fi = fo + fi , where for each k with 0 < k < mo, fo is
symmetric or skew symmetric in all variables ofi degree k depending on whether

k is even or odd and fi £ Vx. Moreover Vx is spanned by elements that come

from lower type polynomials: if g £ Vx then g — Y^gk , where gk £ U and gk

is given by formula (2).

Proof. Let f(xx, ... , xr, yx, ... , ys, ... , zx, ... , z,) in V. First we show

that fi = fo + fii , where fi £ Vx and fo is symmetric or skew symmetric in

all x,'s depending on whether m is even or odd. For an arbitrary 0 £ S*r we

define

o(fi(xx, ... ,xr,yx, ... ,ys, ... , zx, ... , z,))

:= f(xa(X), ... , xa(r), yx,..., ys,... , zx,..., z,).
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Then V is an ^-module. If m is even then by Theorem 2(1), fi - fo +

fi where fi £ Wx and fo is symmetric in all x,'s. Since Wx c Vx by the
definitions of Wx and Vx, we get fi £ Vx. If m is odd then we use Theorem
2(2).

In any case, we have that f = ho + hx, where hx £ Vx and ho is symmetric
or skew symmetric in all x,'s depending on whether m is even or odd. Next

we consider ho and variables yx, ... , ys as above. The above process will not

destroy the symmetry of ho in the x,'s. Thus after a finite number of steps, we

have that fi - fo + fii, where fi £ Vx and fo is as in the theorem.
The last statement of the theorem follows from Theorem 1 and the definition

of U.   □

To summarize, if f £ T(A, W) n V then f = fio + fii with fi an identity,
for z' = 0, 1 by Theorem 3 and the fact that T(A, W) n V is an ^-module.
But we do not know whether fi comes from the identity of lower type although

it comes from a lower type polynomial. However, using Proposition 1 we have

Corollary 2. Let mo = max{m, n, ... , u, r, s, ... , t}. If charF\mo! and

\F\ > 2mo - 1, then every identity fi in V has a decomposition into a sum

ofi two identities of the same type as fi, fi = fo + fi , where for each k with

0 < k < mo, fo is symmetric or skew symmetric in all variables of degree k

depending on whether k is even or odd and fi comes from lower type identities.
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