
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 118, Number 1, May 1993

STRICT RADICAL CLASSES OF COMMUTATIVE RINGS

N. R. MCCONNELL

(Communicated by Maurice Auslander)

Abstract. We classify strongly hereditary strict radical classes for commutative

rings and give some results for supernilpotent strict radical classes and strict

radical classes contained in the nil radical.

In this paper (with a few exceptions) we restrict our domain to the variety

of commutative rings. The technique of restricting study to a smaller class of

rings in order to get simplifications has been used by Widiger and Wiegandt [ 12]

and van Leeuwen [6], who studied the class of hereditarily artinian rings, and

by Gardner [5], who studied the class of regular rings with artinian primitive
images.

Sands [8] studied the relationship between various radical properties (such

as strictness, stability, etc.) for associative rings. He displays 23 different com-
binations of these properties that are satisfied by at least one radical class of

associative rings. On considering commutative rings only, we find the story

much simpler. These 23 combinations reduce to six, mainly because any hered-

itary radical class of commutative rings is left and right hereditary, and every

radical class of commutative rings is left and right stable (and left and right
strong). The six are as follows: satisfying no properties, hereditary, strongly

hereditary, strict, hereditary strict, and strongly hereditary strict; thus study of

strict radical classes looms large in radical theory of commutative rings. The

first section is inspired by Stewart's characterisation of strongly hereditary strict
radical classes of associative rings.

It should be noted here that all the results of Snider [9] on the lattice of

radicals of associative rings carry over in the obvious way to commutative rings.

We denote US is a subring of A"by S < A . For radical theoretic terminology,
the reader is referred to [13].

1. Strongly hereditary strict radicals

It has been shown by Stewart [11] that the only strongly hereditary strict

radical classes in the class of associative rings (besides {0} and the class of all

rings) are the classes 3j>, for P a set of primes, consisting of rings in which

every element has order a product of powers of primes from P. Thus every

3p is contained in 3~, the radical class of torsion rings.
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28 N. R. MCCONNELL

It is also known that the nil radical class Jf is strongly hereditary and strict in

the class of commutative rings. The question then arises: Are there any strongly

hereditary strict radical classes of commutative rings other than meets and joins

of the nil radical and the radicals 3y>. Note that here a meet of radical classes

(denoted by AJ is their intersection and the join of radical classes (denoted by

V) is the radical class defined by the intersection of their semisimple classes.

We will need the following four results.

Lemma 1.1. Let 32 be a hereditary strict radical class. If A0 denotes the ring

with trivial multiplication on the additive group of A, then A0 £ 32 whenever

A£32.

Proof. Suppose A £ 32. Then by [11, Proposition 3.1 (ii)], A[X] £ 32 (as
32 is strict) and the ideal AX is in 32, since 32 is hereditary. Then A0 =

AX/AX2 £32 .   □

Proposition 1.2. Let A be a torsionfree commutative semiprime ring. Then A

is a subdirect product of torsionfree prime rings.

Proof. For any prime ideal P of A , let P = {a £ A\ na £ P for some 77 e Z+}.

For a, b £ P, na, mb £ P, and r e A , we have mn(a-b) = m(na)-n(mb) £

P and m(ra) = r(ma) £ P, so P < A. Also, for c, d £ A, cd £ P, and
k(cd) £ P we have (kc)d £ P, so kc £ P or d £ P (as P is a prime ideal).

But then either c £ P or d £ P, so P is a prime ideal of A .

Now, for 0 7^ t £ A , let S = {mtn\m, n £Z+} . Then 5 is multiplicatively
closed, and as A is torsionfree, 0 & S. Thus we can find an ideal Af, maximal

with respect to disjointness from 5; Af, is prime, so Af, is prime also. Since

kt £ S for any k £ Z+ and S is disjoint from Af,, kt can never be an element

of Af, and so t & Af,.
Finally, if ia £ Af, for some positive integer i, a £ A, then there is a

positive integer j with j(ia) £ M,, that is, (ji)a £ M, and so a £ M,. Hence

A/Mt is torsionfree and prime. Since also t £ Af, for any nonzero t, we have

f|{A7,|0^7C/l} = 0,so that A is a subdirect product of the prime, torsionfree

rings A/Mt.    D

Proposition 1.3. Let R be a semiprime, commutative, torsionfree ring. Either

R has a subring isomorphic to ml, for some m £ Z+ or the subring generated

by any nonzero element of R is isomorphic to the free ring on one generator.

Proof. If 7? has an identity then the subring generated by it will be isomorphic

to Z, so we assume 7? has no identity.

First suppose that there is an m e Z+ , a £ R, a /= 0, such that a2 = 77777.

Define a function /:tt7Z —> (a), where (a) = {na\n £ Z}, the subring of

R generated by a, by f(mn) = na. Then fi(mn) + f(mk) = na + ka -

f(mn + mk) and fi(mn) • f(mk) = naka - nkma = f(mnkm) = f(mn • mk),
so / is a homomorphism. Since 7? has characteristic 0, f(mn) = 0 if and

only if 77777 = 0, so / is injective. Since / is clearly surjective, / is an

isomorphism. Thus mZ is isomorphic to a subring of R .

Second, suppose that for every nonzero a £ R, there is no m £ Z+ with

a2 = ma. Now XZ[X] = {nxX -\-\- nmXm\ ni £ Z} is the free commutative
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ring on one generator. Define h: XZ[X] -» (a) by

h(nxX + •■■ + nmXm) = nxa + --- + nmam.

h is clearly a surjective homomorphism with kernel K = {nxX -\-1- nmXm\

nxa + --- + nmam = 0). Suppose that K ^ 0. Let nkXk + ■■■ + nmXm e K

(where k is the smallest power of X, m the largest) with nknm / 0, so

77^ + ak(nk+xa H-h nmam~k) = 0. Then

nkak = -(nk+xa + ■■■ + nmam-k)ak ,

so there is an element b of (a) with 77^ = bak, and b ^ 0 since 7? is

torsionfree. But we now have (nk)kak — bkak ^ 0 (since A is torsionfree and

a is not nilpotent), so (bk)2 = (nk)kbk (since bk is a polynomial in a with

smallest power of a at least ak). This contradicts our assumption above that

there was no element c ^ 0 of A with c2 = jc for some integer j . Thus h is

an isomorphism, and so (a) = XZ[X] for any nonzero a £ R.   D

Proposition 1.4. The lattice of strongly hereditary radicals of associative rings is

a complete sublattice of the lattice of all radicals.

Proof. It is clear that the meet of any collection of strongly hereditary radicals

is strongly hereditary, so we need only show that arbitrary joins of strongly

hereditary radicals are strongly hereditary. Let {32i} be a collection of strongly

hereditary radicals, and let 32 be their join. Let 7? be a ring in 32. Then
by [9, Lemma 2] there exists a chain {7,} of ideals of 7? (where the X are

ordinals) with 7n = 0, h+i/h £ 32t for some i, Ia = Ui^l^ < <*} f°r limit
ordinals a , and (Jah = R■ Yet S < R. Then {S n 7,} is a chain of ideals of
S, and we need only verify that (S n I^+X)/(SD 7,) € 32j for some i. Now

(S n IM)/(S n 7,) s(5n IM + 7,0/7, c lx+x/h £ 32t

for some i; so since all the 32i are strongly hereditary, we have S £\J 32t as

required.   □

The question of what the strongly hereditary strict radical classes of commu-
tative rings look like can be divided into seven cases (where throughout 32 is
a strongly hereditary strict radical class):

(i) JV V 3~ c 32. Here we can in fact show that either 32 is the class of

all rings or 32 cjr \i 3^ as follows. Suppose that 32 <t JV v ^, and let A
be in 32\Jr V T. Then 0 / A/(JV v 3~)(A) is torsionfree and semiprime, so
by Proposition 1.3 it has a subring of the form mZ (m ^ 0) or XZ[X]. As

32 is strongly hereditary, this subring is in 32. If mZ £ 32, then Q £ 32
by strictness, and hence Z £ 32. But then Z[X] £32 by [ 11, Proposition

3.1 (ii)J, so XZ[X] £ 32. Thus XZ[X] £ 32 in any case, so 32 contains all
one-generator rings and, therefore, all rings.

(ii) 32 C Jf a 3~. Armendariz [ 1 ] showed that for associative rings, the

only nonzero hereditary subradicals of the prime radical, are the classes fi A

3^, where fi denotes the prime radical. His proof works equally well for

commutative rings, so (since fi = JV for commutative rings) the only nonzero

possibilities here are the JV A 3p.
(iii) 32 c 3~, 32 <tjV. Suppose that there is an A £ 32 such that A & Jf.

Then A/JV(A) is a nil-semisimple ^-ring, so it is a subdirect product of prime
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32-rings. Let 7? be one such ring. Then 7? £ 32 C 3~, so 7? has characteristic

p for some prime p and is thus in 3p~. Then the field (2(7?) of quotients of

7? is in 32, and so is Zp (as Q(R) has a subfield isomorphic to Zp). Thus

ZP[X] £ 32, XZP[X] £ 32, and all 1-generated rings of characteristic p are in

32 . It follows that all rings of characteristic p are in 32 .
In particular, Z® £ 32. Let A e yf A 3p~. If a £ A has order p and

a" = 0 ^ a""1, then the subring generated by an~x is isomorphic to Zp . Since

32 is strict, there is an ideal of A in 32; thus every nonzero homomorphic

image of every ring of 3~p A yf has a nonzero 32-ideal and is thus in ^",
so yf A ̂  C ^. Hence for any p-ring A, Jf(A) £ 32 and A/Jr(A) has
characteristic /? (as a semiprime p-ring), so A/yf(A) £ 32 and /I £ 32. We
thus have 3^^132 if and only if 32 contains one prime p-ring. Let P be the

set of primes p for which 32 contains a prime p-ring. Then 3*p c32 and no

other nil-semisimple JT'-rings are contained in 32 . Now, by (ii), there is a set
Q of primes for which 32 A yf = 3q A yf . Then (3q A yf) V ̂  C 32 . If 7?
is any 32-ring and R £ yf, then R/yf(R) is a nil-semisimple 3^-ring, so as

above R/yf(R) £ 3p. Also y^(7?) g^a^,so i?e^V(^A#). Thus
^=3pV(3gAyr).

(iv) ^ C ^, ^ £ &. Let A be an 32-ring with A 0 y. Then 7? =
A/3'(A) is a nonzero ^-semisimple ring and R £ yf as R £ 32 C yf . Let

a £ R. Then a" = 0 for some 77 e Z+ . Let 77 be minimal such that a" = 0, let

m = [(77 + i)/2], and let b = am . Then /32 = 0 and mb ± 0 for all m e Z+ ,

so (/3) is isomorphic to Z° . Thus Z° e 32 , so ^f c 32 , as Z° generates yf ;

that is, 32 =yf.
(w) 3^ C32 , yf £32 . ^ c 32 ^jV\j 3~ .If R£ 32 with 7? 0 y, then

R® £32 by Lemma 1, and as in (iv) yf C ^—a contradiction. Thus 32 =3r.

(vi) Jf c32 , 3~ <t32 . yf c 32 (^Ny3r. As in (iii), there is a largest

set 7> of primes such that 3p C 32 . If R £ 32, then by [9, Lemma 2] there
is a chain {7,} of ideals of 7? with h+x/h in either / or J for every A,

and with \JxIk = R. As in (iii), those h+\/h not in yT must be in 3^, so

7?€^ VyT,thatis, 32 = 3p M yf.
(vii) yf ,3~, and ^ are independent. Here we can show that either 32 c3~

or Jfc 32 , so that this case does not occur.

If there is a ring A £ 3l\9~ then 0 ± A/f(A) £ 32 . If A/F(A) is not
nil, then it has a torsionfree semiprime image fi £ 32. But then 0 / B £

32\3r\Jyf, so 32 is the class of all rings. But if A/3r(A) £ yf then yf c32

(as in (iv)), so when 32 is not the class of all rings either 32 c3~ or yf c 32 .

We thus have

Theorem 1.5. A nonzero, proper radical class of commutative rings is strongly

hereditary and strict if and only if 32 can be obtained by taking meets and joins

ofi the radical classes yf and 3p for various sets P of primes.

It can thus be seen that the strongly hereditary strict radicals form a complete

sublattice of the lattice of all radicals of commutative rings (cf. [9]).

2.  SUPERNILPOTENT STRICT RADICALS

As noted in (ii) of the previous section, the hereditary subradicals of yf are

known, and they are all strongly hereditary and strict. At the other end of the

spectrum, however, Gardner [4] showed that for any subidempotent, hereditary
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radical 32, the polynomial ring A[X] 0 32 for any ring A ± 0. If 32 is
also strict, it follows that 32 = {0}. Thus there are no nonzero hereditary

strict subidempotent radicals (and note that this applies for associative rings
also). Throughout this section we will assume that 32 is a strict, supernilpotent

radical class of commutative rings.

If 32 properly contains the nil radical class Jf, then there is a ring R £32

with yf(R) — 0. Then 7? is a subdirect product of ^"-radical prime rings

{Ax\X £ A} . If Q(A) denotes the field of quotients of a prime ring A , then,
for each X, Ax C 32(Q(Af)) by the strictness of 32 , and thus Q(AX) £ 32 .
Thus 32 contains fields.

Now let 3r be the class of all fields. If 3r n32 = 0 then 32 = yf as above,
so fnJ = 0 if and only if 32 = yf. On the other hand, 3rn32 =3r does
not mean that 32 is the class of all rings, since the upper radical determined by

Z and its subrings (= ideals) is strict (and hereditary) and contains no fields.

In fact, we can say more than this.

Let 38 denote the class of all rings such that no subring is isomorphic to

XZ[X], the free ring on one generator. Then 38 is a radical class (Stewart

[10]). Clearly 38 is strongly hereditary. By [7, Theorem 2.5], the smallest
strict radical class containing 38 (which we denote 3Sf) has semisimple class

SSB< = {A\ S < A =i> 38(S) = 0}.

Now let 3° denote the class of rings such that every 1-generated subring is
isomorphic to XZ[X], and suppose A £ 3° . Let S < A . Then (x) = XZ[X]
for all x £ S, so there is no I <S with (x) ¥ XZ[X] for all x £ I. Thus
38(S) = 0 for all S < A , so A £ 338< .

Conversely, suppose A £ Si38< ; then 38((x)) = 0 for all x £ A . Thus every

ideal of (x) has an element that generates a free subring; in particular, there
is an a £ (x) with (a) = XZ[X]. Suppose 771* H-h nmxm = 0 for integers

nx, ... , nm, nm / 0, and let G(a, b, ...) denote the additive abelian group

generated by a, b, ...  (see [3] for abelian group-theoretic terminology). Then
we have 0 # nmxm = -nxx-\-\-nm-Xxm~x £ G(x, x2, ... , xm~x). Suppose

that for some k > m there is a j £ Z\{0} such that jxk = jxx-\-\-jm-Xxm~x

for integers jx, ... , jm-X. Then

nmjxk+x = nm(jxx + ■ ■ ■ + jm-xxm~x)x

= (nmjxx2 + ■■■ + nmjm-2xm-x) + jm-xnmxm

= (nmj\x2 + ■■■ + nmjm-2xm-x) - jm-x(nxx + ■■■ + nm-Xxm-x)

£G(X,... ,xm~x).

It follows by induction that xm, xm+x, ... have finite order modulo

G(x, ... , xm~x); hence G(x, x2, ...}/G(x, ... , xm~x) is a torsion group, and

thus G(x, x2, ...) has finite torsionfree rank; so G(x, x2, ...) has no free

(abelian) subgroup of infinite rank.

Now G(x, x2, ...) = (x)+ and (a) is a free subring of (x), so (a)+ C

G(x, x2, ...)—a contradiction, as (a) has infinite rank. Thus 72ix + ■•• +

nmxm - 0 only if all the tz, are zero, so (x) = XZ[X] provided x ± 0. Thus

3>=SW<.
Now, by [7, Theorem 2.5] again, the radical class corresponding to S*3S< is

38< = {A\ A/I ? 0 => 0 # S < A/I for some S £38}; that is, the set of rings
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such that every homomorphic image has a nonzero subring in which no element

generates a free ring. We see that 38 ± 38< as, for example, Z[X] £ 38K (with

the subring generated by 1 in any homomorphic image never isomorphic to

XZ[X]) but Z[X]<£38 (as X generates XZ[X]).
The argument can be repeated working modulo a prime p, so that if we

define 38p = {yf|no 1-generated subring of A is isomorphic to XZP[X]} , we

have 5f38p< = {A\ every subring of A has an element that generates XZP[X]},

and the corresponding radical class is 38p< — {A | every nonzero homomorphic

image of A has a nonzero subring in 38p}.
Now let 3 be the radical class consisting of all rings with divisible additive

groups. We can now prove

Proposition 2.1. Let 32 be a strict supernilpotent radical class ofi commutative

rings.

(i)  S£32 if and only if 3n38<c32;
(ii)   Zp £ 32 if and only if 3p n 38p< C 32 .

Proof, (i) Let 32 be as stated, and suppose that 3v\38< c 32 . Then Q has no

subring isomorphic to XZ[X], so (as <Q> is simple), Q £ 38< , and thus Q 6 32 .

Conversely, let <£}£32 and R £ 9 n38< . Without loss of generality, we can

assume that 7? is semiprime and hence torsionfree (as torsion divisible rings

are nilpotent). Suppose 7? has no nonzero idempotents. If a £ R satisfies

a2 = ma for some m £ Z+, let b £ R with a = mb (possible since 7? is

divisible). Then

m2b2 = (mb)2 = a2 = ma = m2b,

so by torsionfreeness b = b2 and a - b = 0. Thus no mZ is isomorphic
to any subring of 7?, so by Proposition 1.3 every 1-generated subring of R is

isomorphic to XZ[X]. But then 7? is ^-semisimple—a contradiction since
7? e 38< . Thus 7? has a nonzero idempotent e . By divisibility and torsionfree-

ness, there are unique elements ex = e, e2, ... of R with 77t?„ = e for each

77 € Z+ . Let E = {rn • e„ • e\ m £ Z,  n £ Z+} . Then we have

nq(m • e„ • e - p • eq • e) = qm • e2 - pn • e2 = (qm - pn)e,

so m-en -e-p-eq -e = nq(m-en -e-p-eq •e)enq = (qm-pn)enq -e £ E. Also

m -e„ • e • p ■ eq -e = mp • e„ • eq • e — mp • enq • e £ E,

so E is a subring of 7?. Defining /: Q —► E by f(m/n) = m • en • e, we see

that / is an isomorphism, so 7? has a subring isomorphic to Q, and thus, by

the strictness_of 32, a nonzero 32-ideal.
Now let fi be a nonzero homomorphic image of R. Then R £ 9 n 38<

also. If yf(R) # 0 then yf(R) is a nonzero 32-ideal of R. Similarly, if

3^(11) ̂  0 then 3r(R) £ yf, and so 3^(71) is a nonzero 32-ideal of R. Finally,

if yf(R) = 3'(R) = 0 then the arguments of the previous paragraph apply to

R, and so R has a nonzero 32-ideal. Thus every nonzero homomorphic image

of R has a nonzero 32-ideal, so R £32 .
(ii) Clearly Zp e 38p< , so Zp £ 32 if 38p< n 3p C 32 . Conversely, suppose

Zp £ 32, and let A £ 38p< n3p. We can assume that A is semiprime, so

A is a subdirect product of prime rings of characteristic p and hence has
characteristic p . Let a £ A with (a) ¥ XZP[X], so there is a set {nk , ... , 7im}
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of nonnegative integers less than p with nknm ^ 0 such that nkak + ■■■ +

nmam = 0. Suppose 777 is minimal; then

nkak = ak(-nk+xa-nmam-k) / 0

(as 0 < nk < p), so letting b = (-nk+xa-nmam~k) we have (nk)kak =

bkak 7^ 0 (since (nk)k is prime to p and nk is not nilpotent). Thus (as in

the proof of Proposition 1.3) (bk)2 = (nk)kbk. Let 0 < j < p with j =

(nf)k (mod p), and write bk = c. Since j and p are relatively prime, there

are integers s and t with sj + tp = 1. Then

(sc)2 = s2c2 = s2jc = (1 - tp)sc = sc,

so the subring generated by sc is isomorphic to Zp . Thus A has a subring

isomorphic to Zp and, by the strictness of 32, an 32 -ideal. If ^4 is a nonzero

homomorphic image of A, then either yf(A) is a nonzero 32-ideal of ,4 or

the arguments above apply to A; in either case, any nonzero homomorphic of

A has an 32-ideal, so A £32 .   □

Since Q£32 means that every field of characteristic 0 is in 32 and Zp £ 32

means that every field of characteristic p is in 32 , we have

Corollary 2.2. %* = \/p(3p'A38p<)\/(3 A38<)\/yf is the smallest supernilpotent

strict radical class ofi commutative rings that contains all fields.

3. Strict radicals contained in the nil radical

As seen in § 1, the torsion radical 3~ and the nil radical Jf are both strongly

hereditary and strict. The divisible radical 9 is also strict (since the divisible
radical of a ring R is the maximal divisible subgroup of the additive group of

R), but is not hereditary. Another radical class that is strict but not hereditary
is the class of all idempotent rings (that is, rings R satisfying R2 = R). We will

focus our attention in this section on the interplay between these four radical

classes and consider those strict radicals contained in yf.
Consider the algebra Z(F, K) over a field F generated by the set {xa\ 0 <

a < 1, a £ K} where K is a field, with Qc/Vci and multiplication defined

by
( Xa+n ,        a + fi < 1 ,

XaXp-\0, a + fi>l,

and extended linearly to other elements (with A^ = Q, this is known as the

Zassenhaus algebra over F). In fact we can define Z(R, K) for any commu-

tative ring R, but for the moment we will only use Z(F, K). For any F and

K, Z(F, K) is idempotent, since, for any a, xa = (xa/2)2. Also Z(F, K)

is nil, since for any a there is an 77 e Z+ with 77a > 1, and thus x" - 0.

Thus Z(F, K) £ J" A yV for any F and K. It is shown in [2] that Z(F, R)
is unequivocal where F is Q or a prime field; this proof works equally well

for any F and K, and we see also that Z(F, K) is divisible and torsionfree

or a reduced p-ring exactly when F is. Furthermore, Z(F, K) c Z(G, L) if

F C G and K C L.
Now suppose that Jf is a strongly hereditary class of rings with Z(F, K) e

Jf and Z(G,L) 0 Jf where Z(F, K) c Z(G, L)  (provided Z(F, K) ?
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Z(G, L), which is certainly true if F 4- G or \K\ ± \L\). Let 32 denote the
upper radical with respect to Jf . Then 32 = {A\A has no nonzero homomor-

phic image in J£} and is strict. By slightly adapting the reasoning in [2], we
see that every homomorphic image of Z(G, L) has the form

Z(G,L)/I = s[cxa + ^2af!Xfs\0<fi<a, c£G/h\

where C7/77 is some additive quotient group of G, xaxT = xa+T if o + t < a

and 0, if a + r > a, axabxz = (ab + H)xa when a + x = a. If we consider

the subring S of Z(G, L)/I defined as for Z(G, L)/I but with c = 0 always,
then the function f:Z(G, L) -> S defined by fi(xa) = xaa is easily seen to be

an isomorphism. Thus every homomorphic image of Z(G, L) has a subring

isomorphic to Z(Cr, L) q- Jf and thus no homomorphic image of Z(G, L)

can be in Jf since Jf is strongly hereditary. Thus Z(G, L) £32 .

This means that for any fields F, G, K, and L as above there is at least one

strict radical class 32 with Z(G, L) £ 32 and Z(F, K)<? 32 , so the lattice of
strict radical classes contained in J* /\yf is at least as complicated as the set
{Z(F, K)\F,K fields, Q c K c R} partially ordered by inclusion. We will
thus turn to those strict radicals 32 with 32 c yf and 32 A^ = {0}; here
things turn out to be much simpler.

Theorem 3.1. Let 32 be a strict radical class of commutative rings contained in

yf with Ja/ = {0}. Then 32 = 3n A 3 for some set N of primes.

Proof. Let 32 be as in the statement of the theorem. Then 32 ± yf, as

there are nil idempotent rings. Let A be a nil-ring with 32(A) = 0. Then every

subring S of A is a nil-ring with 32(S) = 0. Let a £ A , a" = 0 ^ a"'1 . Then
(a) = {mxa-\-\-m„^xan~x\mi £ Z} and (a)n = 0, so (a)"~x = {ma"~x\ m £

Z} = Z° or Z\ (depending on whether a"~x has infinite order or order k

additively). We know Z° £ 32 (as otherwise 32 = yf). If Z\ £ 32 then

Z° 0 32 for some p\k . Let P be the set of primes for which Z° £ 32 . Then

q £ Q, the set of primes not in P, means that Zjel. Thus 3q A yf C 32
(as in § 1 (iii)). But then Z(Zq, K) £ 32 for any K, q £ Q and Z(Zq, K) is
idempotent, so P must be the set of all primes.

Let A £ 32, p £ P, and suppose A / pA. Then 0 ^ A/pA £ 32,
so (A/pA)+ is a direct sum of copies of Z+ . Also (A/pA)2 ^ A/pA and

(A/pA)2 = (A2+pA)/pA = A2/(A2npA), so

0 / (A/pA)/(A/pA)2 = (A/pA)/((A2 + PA)/pA) = A/(A2 + pA) £ 32.

(A/(A2 +pA))+ is a homomorphic image of A/pA+ , and thus a direct sum of

copies of Z+ . Also (a + (A2 + pA))(b + (A2 + pA)) = 0 for all a, b £ A , so

A/(A2 +pA) is a zero-ring and thus is isomorphic to a direct sum of copies of

Z° and hence has a homomorphic image isomorphic to Z°—a contradiction,

as Z° £ R. Thus pA = A for all p £ P and A £ 32 , and so all ^-rings are
divisible.

Since there are idempotent rings in 3 A yf (for example, Z(F, K) for

any K and any fi of characteristic 0), we must have Q° £ 32. Now any

A £ 32 is divisible, so ^ is additively a direct sum of full rational and quasi-

cyclic subgroups and (A/3'(A))+ is a direct sum of copies of Q. Suppose that

A ̂  9~(A). Then (A/3r(A))/(A/3r(A))2 / 0. Let A/3~(A) = R . Then for a
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typical element YI aibi of R2 and for any 77 £ Z+ we can find elements a\ of R

with na\ - a, for every i by divisibility. Thus 7?r-£tf,A = n(r-J2a'ibi) ^ 0

unless r £ R2 by torsionfreeness of fi, so R/R2 is torsionfree. Hence A maps

homomorphically onto a zero-ring on a direct sum of copies of Q, so A maps

onto Q°—a contradiction, so we see that A = 3^(A), and so 32 c 3~ A3 . As

shown in [8], the only radicals of associative rings contained in 3~ A3 are the

3n A 3 for sets N of primes; thus 32 = y A 3 for some such set, since all

the y A 9 rings are commutative, and each y A 3 is strict.   D
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