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BOUNDARY VALUES OF HOLOMORPHIC SEMIGROUPS

KHRISTO BOYADZHIEV AND RALPH DELAUBENFELS

(Communicated by Palle E. T. Jorgensen)

Abstract. Suppose A generates a bounded strongly continuous holo-

morphic semigroup of angle k/2 . We show that \A generates a (1 - A)~r-

regularized group, which is 0(1 + |.s|r) Vr > y > 0, if and only if \\ezA\\

is 0(((1 + |z|)/Re(z))r) Vr > y and iA generates a bounded (1 - A)~r-

regularized group Vr > y > 0 if and only if \\ezA\\ is 0((1/Re(z))r) Vr > y .

We apply this to the Schrodinger operator /(A - V).

I. Introduction

The heat semigroup ezA , where A is the Laplacian on LP(R"), constitutes

a holomorphic function on the right half-plane (RHP) that is bounded on every

sector Se = {z\ |arg(z)| < 9} for 9 less than n/2. Its boundary values e"A,
however, constitute a strongly continuous group (the Schrodinger group) only

when p = 2. It is important to "regularize" e,sA for p ^ 2 and study the

analogous Schrodinger "group" in this case.

In general, when ezA is a bounded (in sectors Sg for 9 < n/2) holomorphic

strongly continuous semigroup of angle 77/2, it is natural to ask when boundary

values exist, in some sense. As indicated in the first paragraph, to include many

interesting examples, this "sense" needs to be weaker than the sense of a strongly

continuous group.

When C is a bounded injective operator, a C-regularized group is a strongly
continuous family of bounded operators {W(f)}t€VL such that W(0) = C,

W(t)W(s) = CW(t + s) Vs, t £ R. The generator is defined by Ax =

C~x(d/dt)W(t)x\t=o, with maximal domain. When A generates a C-regular-

ized group, the (reversible) abstract Cauchy problem

■j- u(t, x) = A(u(t, x))    (7€R), 77(0, x) = x

has a unique mild solution u(t, x) = C~xW(t)x for all initial data x in the

image of C. We also obtain well-posedness on a subspace, that is, there exists

a Frechet space Z such that

[Im(C)]«-+ Z «-» X
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and A restricted to Z generates a strongly continuous group. When W(t) is

exponentially bounded, Z may be chosen to be a Banach space.

The following result has been proven in different mathematical languages in

at least three different places. We state it here essentially in the language of reg-

ularized semigroups (see Theorem 3.1). This interpretation is more convenient

because it gives us classical solutions.

Proposition 1.1. When r > n\^ -j\, {(1 - A)~re'sA}sen is a strongly continuous

family of bounded operators on LP(R").

This appeared in [15] in the language of Fourier multipliers, in [1] in the

language of smooth distribution groups, and in [9] in the language of integrated

semigroups. In [2] and [11] results similar to Proposition 1.1 for 77 = A - V

for appropriate potentials V appear.

In this paper, we show that when A generates a bounded strongly continuous

holomorphic semigroup of angle n/2, the amount of regularizing, C, required

to make elsA into a C-regularized group e'sAC depends on how rapidly \\ezA\\

grows as z approaches the imaginary axis. This is useful for applications, be-

cause we may restrict our attention to bounded operators ezA for Re(z) strictly

greater than zero, which are much easier to work with than the unbounded op-

erators e'sA whose definition, in general, may be somewhat mysterious. Propo-

sition 1.1, along with a growth estimate on the regularized group, follows easily

from our general result, since the heat semigroup is an integral operator, with a

managable kernel, so that we may readily estimate the norm of ezA (§111).

More specifically, we may look at the behaviour of \\ezA\\ in sectors Sg as

9 approaches 7i/2 or in half-planes Re(z) > a > 0 as a approaches 0. By

definition of a bounded holomorphic semigroup, \\ezA\\ is bounded in Sg for

any 9 < n/2; we show that iA generating a (1 - ,4)~'-regularized group that

is 0(1 + \s\r) corresponds to \\ezA\\ being <9((l/cosf?)r), where 9 - arg(z).

Generating a bounded (1 - /I)-'-regularized group corresponds to \\ezA\\ being

0((l/Re(z)f).
We also apply our general result to the Schrodinger operator with potential,

/'(A- V), for V real valued, with V+ a Kato perturbation, and K_ e L°°(Rn),

and show that

{(co-(A-V))-re^A-v^}seR

is a strongly continuous polynomially bounded family of bounded operators on

LP(R") for r > 2n\^ -\\, co sufficiently large (Theorem 3.4). This improves

some known results (see [2, 11]) with a shorter proof.

Basic material on strongly continuous semigroups may be found in [8, 12,

13] and on regularized semigroups in [3, 5, 6].

II. Main results

We assume throughout this section that A generates a bounded strongly

continuous holomorphic semigroup {£,z'4}z6rhp of angle (n/2).

Theorem 2.1. Suppose that y > 0 and 3M < oo such that
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Then Vr > y  3Mr<y < oo such that iA generates a (1 - A)~r-regularizedgroup

{Wr(s)}s€R such that

\\Wr(s)\\<Mrty(l+\s\y).

Theorem 2.2. Suppose y > 0. Then the following are equivalent.

(a) Vr > y 3Mr < oo such that

(b) Vr > y 3Cr such that iA generates a (I - A)~r-regularized group

{Wr(s)}se^ such that

\\Wr(s)\\<Cr(l + \s\r).

(c) ||(1 + \z\r)~xezA(l - A)~r\\ is uniformly bounded in the right half-plane

Vr>y.

It is theoretically interesting that a bounded (1 - ^"'-regularized semigroup

corresponds to the same growth conditions on right half-planes Re(z) > a

rather than sectors. The proof of the following theorem is essentially the same
as the proof of Theorem 2.2.

Theorem 2.3. Suppose y > 0. Then the following are equivalent.

(a) Vr > y  3Mr<oo such that \\ezA\\ < Mr(Re(z))-'.

(b) iA generates a bounded (1 - A)~r-regularized group Vr > y.

(c) \\ezA(l - A)~r\\ is uniformly bounded in the right halfi-plane Vr > y.

Proof of Theorem 2.1. Fix r > y .

1      7"°°
(1 - A)~rx = ~ /    e~uur-xeuAxdu

T(r) Jo

[10, Proposition 11.1], thus for z = t + is,

(1 - A)~rezAx = =f- /    e-"ur-^e((t+u)+is)Ax du
r(r) Jo

so that we may estimate as follows.

11(1 - A)"e'Ai £ m fv""'~' (i^)' (\/("+"2+s2)'""

which is convergent since r - 1 - y > -1 .

As with strongly continuous holomorphic semigroups, since (1 - A)~rezA

is holomorphic and bounded in every rectangle {t + 7510 < t < 1, \s\ < a},

a > 0, its boundary values exist when / —> 0 and define a (1 - A)"'-regularized

group {Wr(s)}s€R. It is straightforward to verify that the generator of the

(1 -^"'-regularized semigroup {(1 - A)~rezA}zeRHP is A, thus iA generates

{rVr(s)}seR.

All that remains is the growth estimate on ||Wr(s)|| = lim,_oll(l-'4)~'^('+'^/'<||,

which by (*) is less than or equal to

j^- fV'v-1-1' (yu2+s2)y du.
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The integral may be shown to be less than or equal to

(1 + \s\7) re-"ur-x-y (yi + u2)y du,

by considering separately \s\ < 1 and |s| > 1, for if |s| < 1 then u2 + s2 <

u2 + 1, while if \s\ > 1 then

u2 + s2 = s2((u/s)2 + l)<s2(u2+l).   a

Proof of Theorem 2.2. (a) —> (b) and (c) —> (b) are essentially the same as the
proof of Theorem 2.1.

(b) —> (c) is a consequence of the maximum principle for analytic functions.

(b) —> (a). Fix r > y. Since {ezA} is a bounded strongly continuous

holomorphic semigroup, 3Kr < oo such that

\\(l-A)re'A\\<Krrr   V?>0

(see [12, last section of Chapter 2]).

For z — x + iy, with x > 0,

\\ezA\\ = ||(1 - A)rexAWr(y)\\ < \\(\ - AyexA\\\\Wr(y)\\

<Krx-'Cr(l + \yn<(Kr)(Cr)(j^Y .   □

III. Application to the Schrodinger operator

We show how Theorem 2.1 may be applied to the Schrodinger operator

/(A - V) for appropriate potentials V.

Theorem 3.1. Suppose  1  < p < co.    Then Vr > n\± - \\,   iA on Lp(Rn)

generates a (1 -A)"'-regularizedgroup {Wr(s)}s€R that is 0((l + |s|"l1/p~I/2l)).

On   Co(R")   or  BUC(R"),   iA  generates a   (1 - A)"'-regularized group

{Wr(s)}seR that is 0(l + \s\"/2)  Vr>7?/2.

Definition 3.2. We will denote by K" the Kato class of measurable functions

on R" as defined in [14, p. 453]. This includes, but is not limited to L°°(Rn).

Definition 3.3. For V £ Kn , it is shown in [14, Theorem A.2.7] that 77 = A- V,

defined as a quadratic form, is a selfadjoint operator on L2(R").

The following theorem states that 77, with appropriate domain, generates

an exponentially bounded (co - 77)"'-regularized group for r twice as big as in

Theorem 3.1.

Theorem 3.4. Suppose I < p < oo, V+ £ Kn, and V_ £ L°°(R"). Let

77 be as in Definition 3.3. Then 3co £ R such that Vr > 2n\l/p - 1/2|,
{elsH(co - 77)"'}J€R  is an  (co - 77)"'-regularized group on LP(R")  that is
0((l + |5|2"l1/>-'/2|)).

On C0(Rn) or BUC(Rn), {eisH(co- 77)"'},GR is an (co- 77)"'-regularized

group that is 0((l + \s\"/2))  Vr > n.

Theorem 3.1 follows immediately from Theorem 2.1 and the following lemma.
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Lemma 3.5. Suppose 1 < p < co and n £ N. Then

/    |_|    xn|l/p-l/2|

■*"*■» s («&>)

whenever Re(z) > 0.

Proc/. The heat semigroup is a convolution operator with kernel Kz(x) =

(4nz)-"!2e-x2/4z, that is,

ezAfi = Kz*f,

Vf £ LP(R"), Re(z) > 0. Thus a direct computation shows that

/   Izl   \"/2II-zAh    _ ii v  ii    _   /      lzl      \
l|e   l|l-|l*z|1'- vReTzTj      •

It is also well known that ||ezA||2 = 1 whenever Re(z) > 0.

Fix z in the open right half-plane. We now use the Riesz Convexity Theorem

[7, p. 523], which asserts that h(a) = log||ezA||i/a is a convex function of a in

[0, 1]. First consider 1 < p < 2, and set p = \ , so that a is in the interval

[j, 1]. For such p , the convexity of h implies that

log ||ezA||p < a log ||ezA||2 + fi log ||ezA||! = P log ||ezA||,,

where a+fi = 1, \a+fi = a = £ . The last two equations imply that /? = j-1,

thus
/     |_|     \n(\/p-\/2)

rt<rt»-. = (_|L)
proving the lemma when 1 < p < 2 .

For 2 < p < co, duality implies that, if £ + ^ = 1 then

/    |_|    x«(l/?-l/2)        /    I,    x/!(l/2-l/p)

Irt = rt < (sLL) =(gLL)
concluding the proof.   □

For the proof of Theorem 3.4, we will need the following from [14, Theorem

B.7.1; 4, Theorem 9]; see also [11, Propositions 2.1 and 2.4].

Lemma 3.6. Let 77 be as in Definition 3.3. Then 3p, c, a £ R+ and a kernel

K(z , x , y) such that

ez(H-p)f{x)= j K(z,x,y)fi(y)dy
JR"

for Re(z) > 0, / £ LP(R")   (1 < p < oo) and

\K(z, x, y)\ < c(Re(z))-"/2exp (-Re (^~))

for Re(z) >0, x,y£Rn.

Proof of Theorem 3.4. Let co = maxJUF-Hoo , p} + 1 . We argue as in Theorem

3.1 with A replaced by 77 + 1 - co.
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Since V + co - 1 is a real-valued nonnegative Kato perturbation so that

-z(V+co-l) is a dissipative Kato perturbation, ||ez(7/+1~'"'||2 < 1 VRe(z) > 0

(see [8, Corollary 6.8]).
By Lemma 3.6,

ll^'-'ll.sJtRetzr^exp^Re^))!^^^)",

where c' is independent of z , so that we may argue exactly as in the proof of

Theorem 3.1 to conclude that Vr > 2/zU - \\,

{eisH(co - H)~r} = {eis{(0-x)eis{H+x-w\l - (H + I - co))~r}

is a 0((l + \s\2n\xlp~xl2\))(to - 77)"'-regularized semigroup.   □
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