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ABSTRACT. Let K be a compact metric space, and let 7 denote the Mackey
topology on M(K) with respect to the (C(K), M(K)) duality. Thatis, 7 is
the topology of uniform convergence on the weakly compact subsets of C(K).
Just as for the weak* topology, the dual space of (M(K), 1) is C(K). How-
ever, 1 is very different from weak* . Indeed, it is obvious that if {x,} is
a sequence converging to x in K, then J(x,) converges to J(x) in the
weak* topology, yet Kirk has shown (Pacific J. Math. 45 (1973), 543-554) that
{d(x)|x € K} is closed and discrete in the Mackey topology. We obtain a fur-
ther result along these lines: For each 4 C K set Ad = {d(x)-d(y)|x #y,
x,y € A}. Let & denote the totality of all subsets 4 of K with the property
that 0 € A4 . Then a closed set is in & iff it is uncountable. Alternatively
stated, a closed subset 4 of K is countable if and only if there is a weakly
compact subset L of C(K) such that for every pair x,y € A, x # y, there
isan h € L with |A(x)—h(y)| > 1.

Throughout, K is a compact metric space.

Our interest here is in the duality between the space of continuous, real-valued
functions on K, C(K), and its Banach space dual, the regular Borel measures
on K, which we denote by M(K). Much, of course, is known about this dual-
ity, however, the bulk of this knowledge is with respect to the weak and weak*
topologies. We consider the Mackey topology on M(K), t:=1(M(K), C(K)),
which is the topology of uniform convergence on the weakly compact subsets of
C(K) . The first notable application of the Mackey topology to the study of Ba-
nach spaces was made by Grothendieck [1], who showed the connection between
t-compacta and the Dunford-Pettis (DP) and reciprocal Dunford-Pettis (RDP)
properties. For the case of C(K), which has both DP and RDP, Grothendieck’s
results tell us that the 7-compact and (M (K), M(K)*)-compact sets are iden-
tical. Other studies involving the Mackey dual of a Banach space have been
published more recently [3, 5, 6].

We denote the closed unit ball of C(K) by B¢k, and for an element f €
C(K), the support of f is defined to be supp(f) := {x € K| f(x) # 0} . Given
a subset 4 of K and an ordinal y, we denote the yth derived set of 4 by
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A" For each A C K, let
AA={d(x)-d(y)e M(K)|x#yand x, y € A},

and let & denote the collection of all subsets, 4, of K with the property that
0 is in the 7-closure of AA4. It is equivalent to require that for each weakly
compact subset L of C(K), thereexist x,y € 4, x #y, with |h(x)—h(y)| <
lvheL.

In the proof of the following lemma, only properties (1) and (4) are used.
However, properties (2), (3), and (5) are important in the proof of Theorem
2 and are stated in the lemma solely to make the proof of the theorem more
coherent.

Lemma 1. Let A be a closed subset of K and let y be an ordinal number.
Suppose that for each ¢ > 0, there is an H C Bck) with the following properties:

(1) H is relatively weakly compact.

(2) Each element of H is supported on an open ball of diameter less than
€.

(3) Each h € H is O on the yth derived set of A, AY).

(4) For every B <y and x € ABN\AB+Y | there is an h € H such that
h(x) =1 and supp(h) N AB) = {x}.

(5) Foreach h € H, thereis an x € A\AY) such that h(x) = 1.

Then Ac D = AV €D .

Proof. Suppose A € & and H, C C(K) is weakly compact. Fix ¢ > 0 and
choose H as above. By assumption, there exists x, y € 4 with x # y such
that |h(x) —h(y)| < 1 forall h e HHUH. If {x,y} c A", we are done,
so suppose that this is not the case. Then, without loss of generality, there is a
B < y such that x € AB)\4B+D) and y € 4®) . By condition (4), there is an
h € H such that h(x) =1 and h(y) = 0. This is a contradiction, so we must
have {x,y} C A®) , hence 4V €2 . O

Theorem 2. If A is a closed subset of K and A€ D, then A € D for every
countable ordinal «.

Proof. We show by transfinite induction that for any countable ordinal o and
any ¢ > 0, there is an H C B¢k that satisfies conditions (1)-(5) of Lemma 1
for y=a.

Suppose o = 1. For each x € A\A), find an open ball B, of diameter
less than ¢, containing x , such that B, N A1) = @, and so that ByN B, = o
for all x # y € A\A). Now find, for each x € A\A"", an h, € C(K)
supported in B, with hy(x) =1 and 0 < A, < 1. Then {A.|x € A\4AV}
clearly satisfies conditions (2)-(5) of Lemma 1 for y = a = 1, and (1) holds
since any uniformly bounded collection of continuous functions with pairwise
disjoint supports is relatively weakly compact.

Now let o be a countable ordinal with the property that for every f < «
and every ¢ > 0, there is an Hy , C Bcx) satisfying conditions (1)-(5) for
y = B . We will show that these conditions hold for y = o as well.

First, suppose that o is not a limit ordinal, say a = #+ 1, for some ordinal
B . By the inductive hypotheses, find H; C B¢(x) satisfying conditions (1)-(5)
for y = B. For each x € A®)\ 4 | find an open ball B, of diameter less than
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¢, containing x, such that B, N A® = &, and so that B, N B, = @ for all
x #y € AP\ A  Now find, for each x € AP\A®  an h, € C(K) supported
in B, with h(x)=1 and 0< h, < 1. Then, letting H, = {h,|x € ABN\A®}
and setting H, . = H;UH,, we immediately have that H, , satisfies conditions
(2)=(5) for y = a. To see that H, . also obeys (1) for y = a, consider that
this is true separately for H; and H,; H; by inductive hypothesis and H, by
the pairwise disjointness of the supports of its elements. Thus, the induction is
established for nonlimit ordinals.

Now let us assume that « is a limit ordinal. Let {f;};>1 be such that
0=Hy<pi<---<a and lim;, i =a. Foreach i>1,let Hp 5 C B
satisfy conditions (1)-(5) of the lemma with ¢ replaced by é; = min{e, 1/i}
and with y = ;. Also for each i > 1, set

F,={f€Hg 5| f(x)=1, for some x € A#-1},

and let H, . =, Fi.

We claim that H, . satisfies (1)-(5) for ¢ and y = a. Let us first show
that (1) is satisfied. Suppose {gx}.>1 is a sequence in H, . and does not have
a pointwise convergent subsequence. Then, since the F; are relatively weakly
compact, we may assume, without loss of generality, that there is an increasing
sequence of positive integers, {m,},>1, such that g, € Fy,, forall n > 1.
Suppose that there is an x € K such that g,(x) is not eventually 0. Then,
without loss of generality, we assume that g,(x) is never 0. Now for each n
there is an x, € ABm-)\A@ such that g,(x,) = 1 since g, € Fp,. But
then |x — x,| < 1/n for each n, so x, — x, and hence x € 4. This is a
contradiction, since all g, are 0 on A . Therefore, H, . satisfies (1).

Condition (2) clearly holds, and so does (3), since h € H, , implies s €
F; for some i, so h = 0 on A¥) 5 4@ Condition (5) holds similarly,
since & € F; implies that there is an x € A%~ such that A(x) = 1, and
by (3), x € A\A®@. To see that condition (4) is satisfied, let B < o and
x € AP\ AB+)) | Then there is an i such that B; < B < i1, and hence, by
the choice of F;,; (namely, that condition (4) is satisfied with y = f;,;) there
isan h € Fiy; C H, . such that A(x) = 1 and the support of x meets 4
onlyat x. 0O

Corollary 3. A closed subset A of a compact metric space K is a member of &
iff A is uncountable.

Proof. (=) If A does not contain a perfect subset then A is countable by the
Cantor-Bendixson Theorem [2, p. 72, 6.66], hence 4A® = & for some countable
ordinal . Thus, by Theorem 2, 4 ¢ & .

(«<) Without loss of generality, assume that A is perfect. Let H be a weakly
compact subset of C(K). Then {h|4|h € H} is a weakly compact subset of
C(A),and hence {h|4|h € H} is equicontinuous at each point of a dense subset
D of A4 [4, p. 522, 2.4]. Let x € D, and find 6 > 0 such thatif y € ANB;,
where Bjs is the open ball of radius d centered at x, then |A(x) — A(y)| < %
for every h € H. Since A is perfect, we can now find a y, z € AN By, with
y # z, hence |h(y) —h(z)|< 1 forall h € H. Therefore, A€ <. O
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