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ON CLOSED SUBSPACES OF OPERATOR RANGES

ROBIN HARTE AND GERRY SHANNON

(Communicated by Palle E. T. Jorgensen)

Abstract. Necessary and sufficient for the closure of a linear subspace to lie in

the range of a bounded linear operator is a certain "bounded preimage property"

for the operator.

If T: X —> Y is a bounded linear operator between normed spaces then we

shall, par abus de notation, also write [3]

(0.1) T:UX)^UY)

for the operator induced between the corresponding spaces of bounded vector-

valued sequences

(0.2) l00(X) = fx£XN:sup\\xn\\<oo\.

1. Theorem. If T £ BL(^T, Y) is a bounded linear operator between Banach

spaces and if M CY is a linear subspace, then there is equivalence

(1.1) clMCT(X)^l00(M)CTl00(X).

Proof. We shall show forward implication for complete X and backward impli-

cation for complete Y. Whether or not either space is complete, the right-hand
side of (1.1) is equivalent to

(1.2) Tf,: T~x(M)/T-x(0) -* Y bounded below.

Indeed if (1.2) holds then there is k > 0 for which

dist(x, r-'(0))<A:||rx||   for each xe T~X(M),

so that if y £ loo(M) is arbitrary then there is x £ XN for which

y = Tx   with dist(x„ , T~x(0)) < k\\yn\\,

and then z £ T~X(0)N for which

||x-z|| <2dist(x, 7_I(0)),

giving

(1.3) y = T(x-z)   with x - z £ ^(X).

Received by the editors September 1, 1991.

1991 Mathematics Subject Classification. Primary 47A05; Secondary 47B07, 46B08.
Key words and phrases. Operator ranges, bounded sequences, Calkin property.

© 1993 American Mathematical Society

0002-9939/93 $1.00 + 5.25 per page

171



172 ROBIN HARTE AND GERRY SHANNON

Conversely if (1.2) fails then there is x £ X® for which

Tx„£M,     \\Txn\\^0,    dist(xn,T-x(0))>l.

Now with
x, = f \\Txn\\-Wxn   if7x„^0,

"     I nxn if Tx„ = 0,

we have ||7X|| -► 0 and dist(.< , T~x(0)) ->oo so that

(1.4) Tx' £ Co(M) C /oo(Af)   and   Tx'(jLTl^X).

If, in particular, the spaces X and Y are complete then condition (1.2) is

also equivalent to the left-hand side of (1.1). To see this we need an auxiliary

subspace

(1.5) m~ = rcir-'(Af).

Evidently

(1.6) MCM~ cT(X)nclM,

and hence, in particular,

(1.7) Tf, bounded below & Tf,~ bounded below.

The operator Tf,^ is one-to-one, with range M~ , and if X is complete defined

on the complete space

(1.8) T-x(M~)/T-x(0) = clT-x(M)/T-x(0),

so that

(1.9) 7£~ bounded below => M~ = cl M~

since M~ is complete. By (1.6) this gives

(1.10) Af~ = clM,

and hence also the left-hand side of (1.1) holds. Conversely if this happens then

clAf is complete (if Y is) and the open mapping theorem gives

(1.11) TfXM:T-x(clM)/T~x(Q) -. Y bounded below,

and hence also (1.2).   □

The same argument gives the analogue of Theorem 1 in which the right-hand

side of (1.1) is replaced by the corresponding property for subsets

(1.12) 0(M)CT0(X),
where P(X) denotes the bounded subsets of X; an easy consequence is that

compact operators on complete spaces have the "Calkin property" [4; 2, Theo-

rem III. 1.12]

(1.13) cl M c T(X) => M finite dimensional.

Notice that we have proved two versions of Theorem 1: we also have

(1.14) clMCT(X)&c0(M)CTloo(X).

In the particular case M = T(X) Albrecht and Mehta [1, Lemma 2.1] have

shown that also

(1.15) clMC T(X) «• lx(M) C T(X) + Co(Y),

which says that the image of M in the "enlargement" of Y [3, Definition 1.9.2]

is included in the range of the enlargement of T.
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