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Abstract. Let K/k be an elementary abelian extension of finite algebraic

number fields. The Hasse norm principle for K/k and its relation to the Hasse

norm principles for all proper subextensions of K/k will be discussed. The

central class field of K/k with k = Q will also be studied.

Let K/k be a Galois extension of finite algebraic number fields. We denote

by Jk and Jk the idele groups of K and k, respectively, and we write NK/k

for the norm map Jk —> Jk ■ The multiplicative groups Kx and kx are

considered, in the usual manner, to be subgroups of Jk and Jk , respectively.

The group of global norms NK/kKx becomes a subgroup of NK/k Jk n kx with

finite index. We will say that "the Hasse norm principle holds for K/k ", when

NK/kJK^kx = NK/kKx . The classical Hasse norm theorem asserts that if K/k

is a cyclic extension, then the Hasse norm principle holds for K/k . We know

that if the Hasse norm principle holds for an abelian extension K/k, then it

also holds for each proper subextension F/k of K/k (cf. [6]). However, the

converse of this fact is not always true. In fact, there are well-known examples

of K/k such that k = Q, the Hasse norm principle does not hold for K/<Q,

and the proper subfields of K are cyclic over Q (see [3, 7]). Moreover, when

the extension K/k is abelian, the most essential is the case where the Galois
group Gal(K/k) is an elementary abelian group (cf. [2, 6]).

Now, let / be a fixed prime number. Throughout the following, we assume

that Gal(K/k) is an elementary abelian /-group with rank n ; [K : k] = I" .

For an elementary abelian /-group A and for its subgroups Ax , A2, we denote

by Ax A A2 the subgroup of the exterior square /\ A of A generated by all

elements ax A a2 with ax £ Ax , a2£ A2;

Ax r\A2 = (ax Aa2\ax£ Ax,a2£ A2).

Of course we identify AXAAX with the exterior square A2 Ax of Ax , regarding

any elementary abelian /-group as a vector space over the finite field F/ with /
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elements. The dual space of each vector space V over F/ will be denoted by

V*:

F* = HomF/(F,F/).

Given any intermediate field F of K/k , we put XF = Gal(F/k)*, for the sake

of simplicity. We moreover put G = Gal(K/k), whence Xk = G*. We denote

by i the linear isomorphism from A2 Xk onto (/\2 G)* such that

(l(X A X'))(g A g') = X(g)x'(g') ~ X(g')x'(g)

for any x. X' € Xk and any g, g' £ G. For each prime v of k, Dv denotes
the decomposition group of v for K/k . Let P denote the set of finite primes

of k ramified in K.
In the present paper, we will first prove:

Theorem 1. Let F be an intermediate field of K/k. Then

(NF/kJFnkx)/NF/kFx = I fj l/\Dv)   J m (/\XF\ ,

where (f\2 Dy)-1 is the annihilator of /\2 Dv in (/\2 G)*.

By means of Theorem 1, we will next prove Theorems 2 and 3 below.

Theorem 2. Assume that n is odd. Then the Hasse norm principle holds for K/k

if and only if it holds for every proper subextension F/k of K/k.

Theorem 3. If n is even, then there exist infinitely many examples of K, with

k = Q, such that the Hasse norm principle does not hold for K/Q but does hold

for every proper subextension of K/Q.

1

This section is devoted to proving Theorem 1.

Put 77 = Gal(K/F). Let Cor„ denote, for each v £ P, the corestriction

map

H2(DVH/H, Z)^H2(G/H, Z),

and let / be the homomorphism

0772(7)„77/77, Z) - 772(G/77, Z)

defined by

f ( E z" ) = E Cor" z"' z» e H2(DVH/H, Z).
\v€P      I        v&P

Then, it follows from Tate [7, p. 198] that

(NF/kJF n kx)/NF/kFx = Coker/

(cf. also [4, 5]). Note that the diagram

H2(DVH/H, Z) -^U H2(G/H, Z)

I 2i

\(DVH/H)      -►      r\(G/H)
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is commutative. Here the lower horizontal arrow is the homomorphism in-

duced by the natural injection DVH/H <-> G/77, and the vertical arrows are the
canonical isomorphisms. Thus, we obtain

(NF/kJFnkx)/NF/kFx = fi (f\(DvH/H)\      ,
v€P V /

where (A2 (DVH/H))±« is the annihilator of f\2(DvH/H) in (p\2(G/H))*.
Let

2 2

n./\G-+/\(G/H)

be the surjective F/-linear map induced by the natural map G -» (7/77. Then

7t induces an injective F/-linear map

tt*:  (f\(G/H)^j   -(AG)

such that n*(a) = a o n, a£ (f\2 (G/H))*. In view of

dimr,(C7 A 77) = fdim*' H} + (dimF, 77)(tz - dimF/ 77)

(1) / \ f2 \
= QJ-dimF/f/\(C7/77)j ,

we obtain Kern = GAH. Therefore

77-' (/\(DVH/H)) = l/\Dv)+(GAH),

namely,

7i* f (/\(DVH/H)\      J = (G A 77)x n (j\Dv)    .

Here (G A H)L is the annihilator of G A H in (A2 G)*. On the other hand,

XF is the annihilator of H in XK = G*, so that i(/\2 XF) c (c7A77)± . Hence
it follows from (1) that

(GAH)^ = i(f\XFY

Therefore, the injectivity of 7r* proves Theorem 1.
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2

To prove Theorem 2, we prepare the next lemma.

Lemma 1. Assume that Xk is spanned by Xi > • • • > Xn over F/, let y be a

nontrivial element of /\ Xk, and write

y=    Y    mu(X, A Xj),        mu e F/ (1 < / < ; < tz).
\<i<j<n

Let My = My(xx, ... , Xn) denote the skew-symmetric (n x n)-matrix whose

(i, j)-component is mtj, I < i < j < n. Then det My = 0 if and only if there

exists a proper intermediate field F of K/k such that y £ A2 XF .

Proof. Let {g,}i<,<« be the basis of G over F/ such that, for any i, j £

{1, ... , t?} , Xi(gj) = 1 or 0 according as i = j or not. Note that y £ /\2 XF

for some proper intermediate field F of K/k if and only if there is a nontrivial

vector (vj)x<j<n in F" such that

2

(2) y£/\xF,,

with F' the fixed field of (Yi"=x g"') in K. However, as already seen in the

proof of Theorem 1,

'(H=K]eH)x-
Hence (2) is equivalent to the condition that

(3) t(y)(gr\f[gA =0   foralUeG.

Since

i(7) [gs^ll g? J  = i(7)    ~ Y "<(&■ A &) + Y v'(& A St)
V (=1        / \     l<;<i s<i<n J

=   Y (~mis)Vi+   Y   m"V>'
l<i<s s<i<n

(3) is satisfied by some nontrivial (i/j)i<i<« £ F" if and only if detMj, = 0.

The lemma is thus proved.

Proof of Theorem 2. Let n be odd and take the basis {Xi}i</<n of XK in

Lemma 1. Assume that the Hasse norm principle does not hold for K/k so

that, by Theorem 1, f]v&P(/\2 Dy)1- contains a nontrivial element, say c. Since

tz is odd, detAf,-i(C) = 0 where Af,i(c) is the skew-symmetric matrix in Lemma

1 with y = rx(c). Hence, by Lemma 1, rx(c) is contained in A %f for some

proper intermediate field F of K/k . This fact implies

(fi fa)   j n l i^XF) 3C*°'
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Theorem 1 then shows that the Hasse norm principle does not hold for F/k.

Therefore Theorem 2 is proved.

In the following, we will be concerned with the case k = Q. For any prime

p = 1 (mod 21), we denote by C^ the cyclic extension over Q of degree /
with conductor p.

Let U be a finite set of primes = 1 (mod 21), and let S, T be subsets of

U. Then we let <P(C/; S, T) denote the set of primes q = 1 (mod 21) which
are not in U and satisfy, for each p £ U, the following conditions:

(i)   q remains prime in C^ if and only if p belongs to 5,

(ii)  p remains prime in C^ if and only if p belongs to T.

Lemma 2. 7tz the above, &(U; S, T) is an infinite set whenever / > 2.

Let W be a finite set of pairs of distinct primes = 1 (mod 4) such that, for

any distinct pairs (px, p\), (p2, p'f) in W, {px ,p[}n{p2, p'2} = 0. Let Y, Z
be subsets of W. Then we let *F( W; Y, Z) denote the set of pairs (q, q') of

distinct primes = 1 (mod 4) which are not in W and satisfy, for each pair

(p, p') £ W, the following conditions:

(iii)   (Bf) = -1    if and only if    (p,p')£Y,

(iv)   (^) = -l    if and only if    (p, p') £ Z ,

(v)   (*£) = (*£)   and   (f) = (#)

where (-) denotes the Legendre symbol.

Lemma 3.  *¥(W; Y, Z) is an infinite set.

Proofs of Lemmas 2 and 3. For any prime q = 1 (mod 21), a prime p £ U

remains prime in C^ if and only if the primes of Q(£) above q remain prime

in Q(C, yfp), where C is a primitive /th root of unity. Therefore, Lemma 2

follows from Chebotarev's density theorem.

Next, we can take infinitely many pairs (q, q') of primes = 1 (mod 4) such

that

(!)=(£)='• ®-©- -<-■)—

Such pairs (q, q') satisfy conditions (iii), (iv), and (v).

Proof of Theorem 3. It is well known that Theorem 3 holds for n = 2. Let

tz > 4. We first consider the case / > 2 . Let px be a prime = 1 (mod /), p2

a prime in <P({/>i}; {px}, 0), and p3 a prime in <P({/?,, p2}; {p2}, {p,, />2}).

Noting that any natural number z/ > 4 is uniquely written in the form

v = I    J + p   with i > 3,   1 < /7 < /,
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we can take a prime pv £ <&({px, p2, Pi, ... , pn\}; SitM, Ti>fl), where

Si,n = {Pp} or {prn\}   according asp < 3 or p > 4,

Ti,\i- iP(')} or 0        according as /z = 1 or p > 2.

Next, for each i £ {I, ... , n} , put

i-\ n-2

according as i < 3, 4 < z < tz - 1, or i = n , and take a cyclic extension F, of

degree / over Q with conductor fi . We then let K = ]T?=i ̂ i' • The existence

of infinitely many such examples of K is guaranteed by Lemma 2.

For each i £ {1,... , tz} , let Kt denote the maximal subfield of K with con-

ductor prime to fi : Kt = T[j^i F,. Further, take a genarator g, of Gal(K/Ki)

and let hj,p denote, for each p £ P dividing fi, the element of Gal(K/Fj)
such that the restriction hj,p\Kj coincides with the Frobenius automorphism

(^zP) • Then Dp = (g,, hjtP). Note that we can write uniquely

(4) hi,p = \\gajir   witha,-,peF/.

It also follows that {g,}i<,<„ forms a basis of the vector space G = Gal(K/ty)

over F/. Let {Xi}i<i<n oe the basis of XK such that, for any i, j £ {1, ... , n},

Xi(gj) = 1 or 0 according as i — j or not. Given any j £ {I, ... , n} , Xj is

naturally considered an element of XFj. We then put

Vj(b) = Xj ( {~^\)    for /3 € Z prime to fi .

Now, in (4),

«,., = «,(«?■') = *,<a,.,W = xj ((^?)l*>) = */ ((^)) - Mrt-
Consequently,

^^(ft.n^)    for  *>G/>> 7>l./«> !</<«•

It follows from the choice of pi, ... , /V<.-i\+„_2 that

¥j(P\) ¥" 0   if and only if   7 = 3,

V/^) ¥= 0   if and only if   _/ = 1 or 3,

Wj(Pf) / 0   if and only if   j = 2 or 4,

and that, for each z/ = ('j1) + p£ {4, ... , ("^') + tz - 2} with 1 < 72 < 7 - 1,

¥j(Pv) #0   if and only if   j = p or j = p + 2 = i + 1.

Therefore we have

2 2

/\7)P| = (gx A g3), f\DPl = <-yi(p2)(£i A ft) + Wi(P2)(g2 A g3)),

2

/\DPi = (-<p2(P3)(g2 A g3) + Wi(Pf)(gi A gf)) ,
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and, for v = ('"') +/7>4, 1 < p < i - 1,

lD   =((gir\glt)   if I <p<i-2,

A  ""     \ (-Wi_x(pu)(gi_l a gi) + Wi+i(Pu)(gi A gi+x))   if p = i - 1,

so that dim¥l(/\2DP)P€P = {"2) - 1, i.e., dimF; f)peP(/\2Dp)x = 1 . Put

n-l

y = Ym'(Xi^Xi+\)
i=\

with rn, = 1, T7Z2 = y/\(P2)¥3(P2)~l, and m, = ^-l^M+i^rX-i for

ze{3.n — 1}. Then, from the definition of z, we easily see that

1(7) £ n (k°p) . wnence n ( Aa> ) = wy))-
pez3 V        / p€P \        I

Moreover, it follows that

«/2

detM^JjTTz^., ^0,

where Af,, = My(x\, ... , Xn) is the skew-symmetric matrix introduced in

Lemma 1. Therefore, Lemma 1 implies (C\peP(/\2 Dp)1) n i(A2 XF) - {0} for

each proper subfield F of K . Theorem 1 thus concludes the proof of Theorem

3 for / > 2.
In the case / = 2, let (px, p[) be a pair of distinct primes = 1 (mod 4),

(P2, P'f) a pair of primes in *¥({(px, p'x)}; {(px, p[)}, 0), and (p3, p'f) a pair
of primes in

V({(PUP'X),(P2,P2)};{(P2,P2)},{(PI,P[)AP2,P'2)}).

For each v = (l2) + p with i > 3 and 1 < p < i, we take a pair (pv , p'v) in

¥({(Pi.Pi). (p2,P2), fa.Ps),'.., (P(i)>P'a))}> Yi,H>Zi,n)>

where

Yi,^ = {(pM, p'f)} or {(p^ , p'^)}   according as p < 3 or p > 4,

Zi.ii = {(P(')' P't'))} or 0 according as p = 1 or p > 2.

Next, putting for each i £ {I, ... , n},

i-\ n-2

di=PiP'i,  Y[p('f)+,p'cf)+fi' or liP(rwphw

according as i < 3 ,   4 < i < n - 1   or   i' - n , we let

7v=Q(vAii",..., yfdn).

Then, quite similarly as in the case / > 2, we can prove Theorem 3 for / = 2

by using Theorem 1 and Lemmas 1 and 3.
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3

In this section, we assume k = Q from the beginning. Let K denote the

maximal unramified central extension of K in the narrow sense, i.e., the max-

imal extension of K such that K is a Galois extension over Q, the center of

Gal(k/Q) contains Gal(K/K), and any finite prime of K is unramified in K.
We denote by 3? the genus field of K in the narrow sense, i.e., the maximal

abelian extension over Q containing K such that any finite prime of K is

unramified in 3£. For each intermediate field L of K/JF, put

XL = Gal(L/3?)\

It is known (cf. [1,6, 4]) that

(5) Gal(7?/Jr) = (NK,QJK n ®x)/NmKx.

As studied in the previous paper [4], there exists a F/-linear map p from A G

onto Gal(k/J^) such that

p(o\K A t\k) = oto-1Tx\K,        o,x£ Gal(AT/Q),

where K is the Hilbert class field of K in the narrow sense. Let p* denote

the injective linear map from X-g into (A G)* induced by p:

p*(P) = /3oP,      peXf.

The following Theorem 4 is a modification of Theorem 1 in [4].

Theorem 4. Let F be a subfield of K, and let F denote the maximal unramified

central extension ofi F in the narrow sense. Then Ff% is the maximal central

extension ofi F in K and

Proof. We may consider F to be the same as in § 1, whence we use the notation

77 = Gal(A7F), 7t, n*, etc. Let L be the maximal central extension of F

in K. Put 3 = Gal(AVQ) and Jt = Gal(7?/F). Then Gal(^/L) = \&,MT\.
Noting that the correspondence

(oSr,xMr)»aTO-xx-x]&,MT\,       ff, tef,

defines a skew symmetric bilinear map from ^/^x^/X onto [&,&]/[&, W],

we obtain a linear map r from A2 (G/H) onto Gal(L/^) such that

/•((rj|Jrv)77A(T|^)77) = (CTTff-1T-1)|L,        a,  t£$.

Let r* denote the injective linear map from Xl into (A (G/H))* induced by

r:

r* = fior,        $£XL.

Since the diagram

Gal(A7JT) «——      AG

I 2 [•
Gal(L/J8T) i- /\(G/H)

r
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commutes, with the vertical arrow on the left the restriction map, it follows that

n*or*(p) = p*(P),        fi£XL.

Hence we find that

p*(XL) C lmp*nlmn*= ( f| l/\Dp\    j m(f\XFY

On the other hand, X^ = (NF/QJF n QX)/NF/QFX (cf. (5)) so that, by The-

orem 1,

Theorem 4 now follows from L d FJf.

Corollary. Let y be an element of /\2 XK with i(y) £ f]p£P(/\2 Dp)1.   Then

there exists a unique cyclic extension L of degree I over X contained in k

for which p*(Xf) is generated by i(y). Moreover, if F is a subfield of K such

that y £ A2 XF, then L is a subfield of FJf.

We conclude the paper with a result immediately obtained from Theorems 2
and 3.

Proposition, (i) If n is odd, then K is the composite ofi the genus field JP ofi

K in the narrow sense and the maximal unramified central extensions F in the

narrow sense of all proper subfields F ofi K:

\fck   j

(ii) If n is even, then there exist infinitely many examples of K such that
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