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THE SECOND NORMAL BORDISM GROUP
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(Communicated by Frederick R. Cohen)

Abstract. We determine the second normal bordism groups of space pairs in

terms of their homology groups except for certain group extension problems.

Given a stable vector bundle <j> over a pair of topological spaces (X, A) and

an integer n > 0, we can define an abelian group £ln(X, A; cj>) called the nth

normal bordism group of (X, A) with coefficients in $ (see [1, 3, 10]). These
bordism groups are of relevance in the immersion and embedding theory. For

example, in certain cases, the enumeration problem of differential immersions

and embeddings of manifolds into manifolds may be converted into the problem

of enumerating elements in certain normal bordism groups by [1, 3, 10, 11].

Explicit computations of normal bordism groups are extremely difficult in

general. In [3] Koschorke developed an exact sequence that enables us to deter-

mine Q„(X; (j>) for n < 2 except for certain group extension problems. These

extension problems have been solved partially by a recent work of Li [5]. The

Koschorke sequence is the basis of almost all the known work on singularity

approaches to immersions (see, e.g., [2-8]). However, to study embeddings

in the normal bordism framework, one has to use the normal bordism group

of a certain space pair (X, A) where A is nonempty. The bordism group

Qn(X, A; 4>) is simple when n < 1 because in these cases, it is easy to see that

if X and A are path-connected then £l„(X, A;tp) is canonically isomorphic
to Hn(X, A; lif) where Z,^ is the integer coefficient system twisted by wx(<j>).

This has been applied in [6, 7] to the enumeration problem of embeddings of

n-manifolds into (2n + 1)- and 2n-manifolds.

In this paper we determine the bordism group £l2(X, A; <j>) in terms of

homology groups of (X, A) except for certain group extension problems. Our

result can be used to enumerate embeddings of n-manifolds into (2n - 1)-

manifolds. To do this, one needs explicit computations of homology groups of

a certain very complicated space pair, which is not the subject of this paper.

Throughout this paper we shall follow Salomonsen's definition of normal

bordism groups in [10]. So Q„(X, A; c/>) is the bordism group of triples of the

form (M, /, /) where Af is a compact smooth n-manifold, /: (M, dM) —►
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(X, A) is a map, and /: TM —> fi*cp is a stable bundle isomorphism. Sa-

lomonsen's normal bordism group is canonically isomorphic to that of Dax and

Koschorke in [1,3] but uses the opposite sign convention for the stable vector

bundle 4> ■ The reader is referred to [1, 10] for the basic properties of normal

bordism groups.

We now come to the main result of this paper.

Theorem. Let   X   and  A   be homotopically equivalent  to connected CW-

complexes with finite skeletons in all dimensions,  X D A ± 0, and let <p
be a stable vector bundle over X.    Then  Q2(X,A;4>)  is an extension of

H2(X,A;Zf)  by CokerO.   Here <P: H^(X,A,Zf) -+ HX(X,A;Z2)  is de-
fined by <P(x) = w2(df) n p(x) and p is the modulo two reduction.

It seems possible to prove the theorem along the lines previously used by

Koschorke [3] in developing his exact sequence. One needs first to define a

relative version of Koschorke's fine bordism groups and then check the validity

of all necessary constructions and proofs in [3] for manifolds with boundary.

Here, instead of making these tedious checks, we derive our theorem directly

from thej'absolute" Koschorke sequence using certain geometric considerations.

Let Q„(X, A; (f>) be the bordism group of triples of the form (M, /, a)
where Af is a compact smooth n-manifold, /: (Af, dM) —► (X, A) is a map,

and a: £tm — €/'</> is an isomorphism between orientation line bundles. Then

there is a natural forgetful homomorphism

p:Qn(X,A;dj)^an(X,A;(f>)

defined by forgetting about a stable bundle isomorphism and retaining only the

underlying orientation information. Moreover, if n < 3 then there is a natural

isomorphism

d:Sin(X,A;<p)^Hn(X,A;Z4>)

defined by Q(x) = f*([M]) where x is represented by a triple (M, f, a) and
[Af] e H„(M, dM; ZTm) is the fundamental class of Af. The special case
where A is empty was proved by Oik [9]. The general case can be proved by

comparing the long exact sequence of homology groups of (X, A) with the

corresponding exact sequence involving £!„ .

We now consider the following diagram:

T{A) -»    a2(A;(j>)    ->    a2{A; <t>) °2    .   Z2

1 1* 1 II
T(X)        —^—    02(X;<I>)    —^—    n2(X;<f,)    -1  z2

h h

U3{X,A;4>)-—► HX(X,A;Z2)-—> a2(X,A;<j>)-—► Si2{X,A;<j>) -> 0<*'

ki k2

0.2(A;4>)    —-S— Z2 —^-*    ax(A;<l>)    ->    HiM;fl

a2{X;4.)    -► Z2
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where T(X) denotes a certain normal bordism group of X x 770(2). The

vertical sequences above are long exact sequences of normal bordism groups

of space pairs and the horizontal sequences, except the one marked (*), are

exact Koschorke sequences given in Theorem 9.3 of [3] (note, however, slightly

different notations were used there). The assumption on X and A ensures the

existence of these Koschorke sequences.

The above homomorphism 5 is defined as follows: Let x e HX(X, A; Zf).

Since jx is surjective, there is an element y £ T(X) so that jx(y) = x. We

define d(x) = j2Sx(y). The homomorphism a is defined by a = <P o 8 . It is

not difficult to see that these homomorphisms are well defined and make the

above diagram commute.

In the remainder of the paper we shall prove the exactness of the horizontal

sequence marked (*) in the diagram above, which by virtue of our previous

discussions, immediately leads to the conclusions of our main theorem.

For our purpose we_ shall need a geometric interpretation of the homomor-

phism a . Let x € Cl-i(X, A; (f>) be represented by a map F: (W, dW) ->
(X, A) and an isomorphism a: £tw — Zf'4, where IF is a compact smooth

3-manifold. Then TW - F*<j> is stably equivalent to a 2-dimensional vector

bundle y/ over W. Since ip is orientable, it is trivial if and only if there is a

nonzero section of ip. Take a nondegenerate section u of \p over W. Then

the zero-point set S of u, which is the singularity set for finding a stable trivial-

ization ofi TW -F*<p, is a compact smooth 1-manifold with dS = Sr\d W. We

claim that o(x) is represented by S in the sense that a(x) = F„([S]f) where

[S]2 £ Hx (W, d W; Zf) is determined by S. To prove this one may note that

[S]2 = F*w2(dj)r\p([W]) because it can be seen from Chapter II of [1] that [S]2

is the Poincare dual of w2(\p) = w2(TW - F*</>) = F*w2(cf>). The assertion
now follows by the naturality of the cap product.

We now prove the exactness of the sequence (*), which can be viewed as a

relative version_of the Koschorke sequence.

(1) Let x £ U2(X, A;4>) be represented by a map /: (Af, dM) -* (X, A)

and an isomorphism a : £,Tm — £,f<t> where Af is a compact smooth 2-manifold.
Since TM - f*<p is orientable, it is stably trivial restricted over M with a point

p £ M-dM removed. One may assume that there is an open disk D c M-dM

around p so that fi(D) c A . Since the triple (Af, /, a) restricted to Af - D

also represents x, it follows immediately that x £ Imp. This proves that p

is surjective.

(2) To check the exactness at Cl2(x, A; <f>), note that obviously p o 8 - 0.

On the other hand, let x e Q2(X, A; (j>) satisfy p(x) = 0. We claim that
k2(x) = 0. Assuming this result for a moment, we can choose an x' £ Q2(X; d>)

with j2(x') = x . An easy diagram chasing shows that there exist y £ Q2(A; cj>)

and z e T(X) so that p2i2(y) = p2(x') and Sx(z) = x' - i2(y). Clearly,

j2dx(z) = j2(x') = x . This proves that Kerp Clmd as desired.

To prove k2(x) = 0, let x be represented by a map /: (Af, dM) —> (X, A)

and a stable bundle isomorphism /: 77Af —»/*</> where Af is a compact smooth

2-manifold. The vanishing of p(x) implies: (i) There is a compact smooth 2-

manifold N and a map g: N -► A so that ON = dM and g\9N = f\dM',
(ii) There is a compact smooth 3-manifold W and a map F: W —> X so that

dW = MU N, F\sw = / U g , and TW - f*cj) is orientable. Let u be the
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stable trivialization of (TW - F*4>)\m determined by /. Then the singularity

set S for extending u to a stable trivialization of TW - F*cj> is a compact

smooth 1-manifold. The boundary of S then is the singularity set for extending

u\dN to a stable trivialization of (TW - F*<f>)\ # . Let r £ Z2 be the modulo
2 number of boundary points of S. Then So(r) = k2(x) by [3]. This implies

that k2(x) = 0 since the number of points in dS must be even.

(3) We now prove the exactness at HX(X, A; Zf). Let x £ Q^(X, A; tp) be

represented by a map F: (W, dW) —> (X, A) and an isomorphism a: £TiV =
^p.^ where IF is a compact 3-manifold. Then o2k^(x) = 0 in the above

diagram. This implies the existence of a stable trivialization u of TW - F*(f>
over dW. Such a trivialization will define an element y £ Q2(A;4>) that

clearly satisfies p2i2(y) = 0. We can then choose an element z e T(X) so that

Sx(z) = i2(y). Since the triple (W, F, a) above also gives us a null-bordism of

p2i2(y) in £l2(X;4>), z may be represented by the singularity set for extending

u to a stable trivialization of TW-F*d) over W by [3]. It follows by definition

that o(x) = jx(z) and that 5o(x) - j2Sx(z) = j2i2(y) = 0.

Conversely, given z £ T(X) satisfying j2Sx(z) — 0, there exists y £

Q2(A; cj>) so that i2(y) = Sx(z). Let <5i(z) be represented by a map /: Af —> A

and a stable trivialization of 77Af -/*</> where Af is a closed smooth 2-
manifold. Then there is a compact smooth 3-manifold W with boundary Af,

a map F: W —> X extending /, and an isomorphism a : £tw — £,F*<t> that

restricts to the one induced by the stable trivialization of FAf - f*4> over Af.

This defines an element x £ Q,^(X, A; cj>), which in view of discussions in the

last paragraph clearly satisfies o(x) = jx(z).

The proof of the theorem is now complete.
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