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ON IMMERSIONS OF k-CONNECTED n-MANIFOLDS
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(Communicated by Frederick R. Cohen)

ABSTRACT. In this note we classify up to regular homotopy the classes of im-
mersions of k-connected closed differentiable n-manifolds in R2"—*

In [W] it was claimed that for a k-connected closed differentiable manifold
M of dimension n with 0 < 2k < n — 2, the regular homotopy classes of M
in R2"* are in one to one correspondence with tn(Van—k, n), where Vap_g 4
is a Stiefel manifold. But this result is incorrect. In this note, we will present
the correct answer and give counterexamples to the claim of [W].

To state our result, some definitions are needed. First, let 7;(M) be the ith
homotopy group of M . Then

h: s (M) — KO(S*)

is defined as follows: If a € @, (M) is represented by a map & : S¥*! — M,

then h(a) is the element in KO(S**!) represented by 2a*vy,, where vy is
the stable normal bundle of M . It is easy to see that 4 is well defined and is
a homomorphism.

Next, let

k : KOS - n,(SO)
be the natural isomorphism,
J 1 (SO) — m} = mu(S"7F)

be the J-homomorphism, and let
Sn—k _I' V2n—k, n— I/EZn—k, n—1
be the natural fibration. Let
e=i,0Jokoh : my (M) — ny(Vani, n)
Then we have
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Theorem. If 0 < 2k < n—2 and M is a k-connected closed differentiable
manifold, then the regular homotopy classes of immersions of M in R*"~k gre
in one-to-one correspondence with the cokernel of e .

Example. Let K2 be the Cayley projective plane and M = K? x $23. Then M
is 7-connected with dimension 39, and the homotopy sequence of the fibration
S32 — V31,39 — V71,38 gives the split exact sequence

0 — m39(S*) — m39(V1,39) — m39(Vo1, 38) — 0

|= |2
Zaag Zyy ® Zyg

Now, the tangent bundle of K? restricted to K'! = $? is stably equivalent to
the canonical 8-dimensional vector bundle, which can be defined by regarding
S8 >~ R8 U {oo} = D, UD_ and R® as the Cayley algebra. Let D, = {x €
R8/|\x|| < 1} and D_ = S -D, . Glue D, xR? and D_xR® over D,nD_ = §’
by (x,y) ~ (x, xy) where xy is the product of x € S7 and y € R® as Cayley
numbers (see Steenrod [S, p. 109]).

Let 1,e, ..., e; be the units of Cayley algebra. Then x — (x, xey, ...,
xe;) defines a map S7 — SO(8), which represents a generator of the first
summand of 77(SO(8)) & n7(S7) ® n7(SO(7)) & Z & Z, hence a generator of
n7(SO) (cf. [L, Remark 4]). Thus 2T(M) |, represents twice a generator of
KO(S?). Since J = m7(SO) — ©3 is surjective, we see that the cokernel of e
is isomorphic to Z; ® Z,, ® Z,¢ . This shows that the result of [W] is incorrect.

We can produce more examples. Let ¢ be any 8-dimensional vector bundle
over S8. Then the second Pontriagin class p;(¢) = 6q for some g € Z (cf.
[K]). Let M =S(E @ 1) x $23, where S(é @ 1) is the total space of the sphere
bundle of (¢ ® 1). Then ng(M) = Z & Z and s maps one summand to O,
another to 2¢gZ. Thus the image of e can be any subgroup of 7z§ > Zoao
consisting of even elements, and only when ¢ = 0 mod 120 is the result of [W]
true.

Since 2KO(S*+') =0, if k #3, 7mod 8, we have

Corollary 1. If k # 3, 7mod 8, then the cokernel of e is n(Vap—k n)-

If n—k isodd, then i, = 7,(S" %) — n,(Van_x_ n) sends 27,(S" k) to zero
since the first two essential cells of the Stiefel manifold form a Z/2 Moore
space. So we have

Corollary 2. If n—k is odd and k # 3, 7 mod 8, then the image of e is zero.
Proof of the theorem. By using normal bordism theory, we see from [Ko] or [D]
that Imm[M , R2"~] (or [M «x R¥"k]) =~ Q,(M x P>, ¢), where P> is the
infinite real projective space, ¢ = 2n —k)A-A® T(M)—T(M), and 4 is the
canonical line bundle over P> . There is an exact sequence

Qi1 (M x PP, % x P®, )20, (P™, ¢|p)
—>Qk(MxP°°, ¢)—»Qk(M)<P°°, * XPOO, ¢)

(cf. [D, p. 310]), where x € M isa point. Since (M x P>, P>) is k-connected,
it follows from Proposition 5.1 in [D] that Q;(M x P®, x x P*,¢) = 0,
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and the natural homomorphism
1 Q1 (M x PP % x P®, §) — Hyy (M x P®, % x P®, Z(g))

is an isomorphism.
Now look at the exact sequence

— He1 (P, 2(9lp=)) = Hi1 (M x P, 2(9))
——) Hk+1(M X Poo * X Poo Z(¢))
2 H(P®, 2(@lp=)) % He(M x P>, 2(9)).
Since W) (¢) = Wi((n — k)A), we have Z(¢) =Z ® Z((n — k)A) . Hence, by
the Kiinneth formula for twisted coefficients,
H.(M x P>, Z(¢))
= H(P*, Z((n-k)A)® H.(M , Z) ® Hy(P*™, Z((n — k)A))
for * < k+1. This shows that i; is an isomorphism and j is an isomorphism
from Hy, (M, Z)® Ho(P>, Z((n — k)A)) t0 Hiy (M x P®, P>, Z($)).
Now Qi (P>, ¢|p=) = Qi (P, (n—k)A) = ny(Van—k,n) (cf. [D, Proposition
7.3] or [Ko, Proposition 5.4]). We need only to calculate the image of J in the
following diagrams:

Q1 (M x P2, P>, ¢) 2 (P, dlpw)
He (M, Z) ® Hy(P®, z((n — k)A)) 7n(Vanic.m)

By the Hurewicz isomorphism theorem,
Hy (M)2 Heyy(M, Z) ifk>0,

m1 (M)
[m1 (M), m(M)]

Let S¥*! = D, UD_, where D, and D_ are disks with D, NnD_ = S* and
¢ : Sk+*! _, P> be a constant map. For any a € my, (M, *), we can choose
& :Sk+! M | representing a with &(D_) = x.

Let @ = (&,c) : D, - M x P>*. Then a maps (D;,dD,) into (M x
P>, x x P®). Regard ¢ as a stable bundle; then T(D,)® a*¢ obviously has
a trivialization V. Thus the triple ((D+, dD,), @, V) defines an element in
Qri1(M x P, xx P®,¢), and (D4, alsp, , V|sp,) defines an element in
Q (*, trivial) = n; , which can be regarded as an element of Q; (P>, ¢|p~ via

the inclusion * = ¢(S**!) ¢ P> . From the isomorphisms
Qi1 (M x P®, % x P, $) = Hi (M x P®, x x P*, Z(9))
= He(M, Z()) ® Hy(P™, Z((n - k)A))
¥ M1 (M) ® Ho(P, Z((n — k)A).

~H/(M,Z) ifk=0.

We see that the image of
0 : Q1 (M x PP, xx PP, ¢) = Qu(P™, ¢|p=)
is exactly the set {[(0D+, @lap, , Vlop,)l/a € iy (M)} .
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Regard V|sp, as a trivialization of
(T(D-)®a"¢)lop_ ;

then it defines an element of m,(SO), which is the value of k : KO(Sk+!) —
7, (50) on the stable bundle &*(2vy,) = h(a). It is obvious that the element
in Q(x, trivial) defined by (8D, , &lsop, , Vlsp,) is (J ok o h)(a).

Now, the only remaining thing is to see that the diagram

Qy (, trivial) —— Q (P, (n—k)2)

1 I

Ta(S"K) L 1(Vank. w)

1R

commutes. First

| P2n—k—1
Qi (P, (n=k)A) = (P, (n—k)A) = m, (m)

where P2"—k=1/pn—k=1 is the Thom space of (n—k)A. Under the natural map
P2n—k—l/Pn—k-] - V2n—k,n

the Thom space of (n—k)A restricted to a point maps onto i(S"~X) Van—i ,n -
So the above diagram commutes. So far we have proved that in the following
diagram

Qi (M x PP 5 x P, ¢) —2 s Qu(P™, §|poo)— (M x P, ¢) = 0

Ty (M) ”n(Vzn—k,n)
the images of 9 and e are isomorphic and hence so is the theorem.

e=i,oJokoh
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