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METRIC ENTROPY CONDITIONS
FOR AN OPERATOR TO BE OF TRACE CLASS

JOSE M. GONZALEZ-BARRIOS AND RICHARD M. DUDLEY

(Communicated by Palle E. T. Jorgensen)

Abstract. Let A be an operator from one Hilbert space H into another. It

was known that A is of trace class if and only if the metric entropy of A(B)

is integrable where B is the unit ball in H . We give a new, general sufficient

condition for an integral operator to be of trace class, and examples showing it

is sharp but not necessary.

1. Introduction

Kolmogorov's concept of e-entropy (e.g., [KT]), here called metric entropy

[Lo], is a measure of the size of a totally bounded metric space (5, d). Given

e > 0, let Nm(s, 5) be the smallest number of closed balls B(xt, e) :- {y :

d(Xi, y) < e} , / = 1, ... , 77, in a covering of 5, in other words, the smallest

77 such that there exists an e-net {xx, ... , xn} for (S, d). The diameter of a

set A c 5 is

diamv4 := suo{d(x, y) : x, y £ A}.

Let NK(e, 5) be the smallest number of sets Aj with diam.4, < 2e that cover

5. Let D(s, 5) be the largest number of points x,- £ 5 such that <af(x,, Xj) > s

for all i £ j. Then it is known and easily checked that

(1.1) D(2e,S) < NK(e,S) < NM(e,S) < D(e,S).

Thus as e | 0, these quantities are of the same order of magnitude, up to a

factor of 2 in e. Let HK := log A^ , HM := logNM, and C := logD. The
first result we will state is

Theorem A. If H is a Hilbert space, B its unit ball, and A a bounded operator

from H into another Hilbert space, then

(i) A is of trace class if and only if

(1.2) / HM(e,A(B))de <oc;
Jo
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(ii) A is a Hilbert-Schmidt operator if and only if

(1.3) / HM(ex'2,A(B))de< oo.
Jo

Here HM(-, •) can be replaced by HK(-, -) or C(-, •).

Theorem A reduces easily to the case of selfadjoint compact operators with a

basis of eigenvectors and thus to diagonal operators. Then, part (ii) was stated
by Sudakov [Su] and is proved in Marcus [Ma]; part (i) was given by Oloff [Ol],

see also Carl [C].
An operator A is Hilbert-Schmidt if and only if A* A is of trace class, where

A* is the adjoint of A . Hilbert-Schmidt operators are interesting to probabilists

as the so-called radonifying operators between Hilbert spaces: Sazonov [Sa],
Minlos [Min], Kolmogorov [K], and Schwartz [Schw]. On related questions for

the isonormal and other Gaussian processes, the metric entropy condition

(1.4) / HK(e,E)xl2de<rjo
Jo

has been studied by Dudley [Dul, Du2] and Fernique [F]. Then (1.4) implies
(1.3) for an ellipsoid E — A(B) but not conversely; for example, if HK(e, E) ~

e~2|loge|a as e J. 0, then (1.4) holds just for a < -2 and (1.3) holds for

a < -1.
The characterization of trace class operators gives a sufficient condition for

an integral operator to be of trace class as follows. Let (X, p) and (Y, v) be

two finite measure spaces. Let K £ L2(X x Y, p x v). Then, as is well known,

an integral operator Ak from L2(v) into L2(p) is defined by

AK(f)(x) = JK(x,y)fi(y)du(y)

and is a Hilbert-Schmidt operator. Conversely, any Hilbert-Schmidt operator

from L2(v) into L2(p) is of the form AK for some K £ L2(X xY, px v).

Conditions for Ak to be of trace class are not as simple. Here is the main new

result of this note, a sufficient condition based on metric entropy.

Theorem 1. Let KY :- {K(-, y) : y £ Y}. Suppose K is such that for some

Af < oo and r < 2, for 0 < e < 1 we have Nm(e, Ky) < M/er. Then AK is

of trace class.

The next section will give quite short, partly new proofs of Theorem A and

some related facts to be given in Theorem B. Then §3 proves Theorem 1 and
shows that " r < 2 " is sharp but that no metric entropy condition on KY char-

acterizes trace class integral operators.

2. Statements and proofs for Theorem A

We can assume that the bounded operator A takes the Hilbert space H
into itself. Let B be the unit ball of H. Let \A\ := (A*A)XI2. If any of the
conditions in Theorem A is to hold, A must be a compact operator, hence so

is \A\. Then there is an orthonormal basis {e„} of H with \A\e„ = a„e„ for
all 77 and a„ -> 0, n -> oo. For a given orthonormal set {/„} and bounded

sequence of numbers c„ > 0, define the ellipsoid E({c„}) := E({cn}, {fn}) '■=
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{LnXnfn ■ E„(**/c*)2 < 1}. Then \A\(B) = E({bn}, {/„}), where /„ is the
subsequence of those e„ such that an ^ 0 (so an > 0) and b„ are those a„ .

Also, via a partial isometry (e.g., [Scha, p. 4]) A(B) = E({bn}, {gn}) where

{gn} is an orthonormal set. So A(B) and |^4|(5) are isometric ellipsoids, with

the same sequence {b„} . We can assume that b„ j 0 as t? -> co.

For a sequence /)„ j 0 and t > 0, let ra(/) := sup{7? : /)„ > 1//}, or 0 if

bo < l/t. For s > 0 let I(s) := f*m(t)/tdt. Theorem A will follow easily
from Theorem B. A key step in the proof follows from Mityagin [Mit]. Theorem

2 of Marcus [Ma] includes the case r = 2; and Oloff [Ol] includes the general

case.

Theorem B. Let E := E({b„}, {ff}) for an orthonormal set {ff} and some

b„ i 0. Let 0 < r < oo. Then the following are equivalent:

(a) Znbrn<™.

(b) /,°° m(t)rr-x dt < oc.

(c) For some c > 0, /0 I(ce~x/r)de < co.

(d) For all c>0, /0l I(ce~llr) de<oo.

(e) ^HM(ex'r,E)de<oo.

In (e), HM(-, -) can be replaced equivalently by HK(-, •) or C(-, -).

Proof. The series in (a) equals the Riemann-Stieltjes integral /0°° t~r dm(t). So

(a) is equivalent to (b) by integration by parts (e.g., [Le, p. 10]).

Next,

and since m(t) = 0 for 0 < / < l//3n, (b), (c), and (d) are all equivalent.

By results of Mityagin [Mit, p. 74], (d) for c — 8 implies (e), and (e) implies
(c) for c = 1/2. So (a) through (e) are equivalent.

In (e), Hm can be replaced by Hk or C by (1), and since all these func-

tions are nonincreasing, integrability is only an issue near 0. So Theorem B is

proved.   D

Carl and Stephani [CS, pp. 118-119] give other relations between semiaxes

and metric entropy of ellipsoids.

Proof of Theorem A. For (a), A is of trace class by definition iff J2n °n < oo,

and Hilbert-Schmidt iff Yl,nb\ < oc, so we can apply Theorem B for r =
1,2.    D

3. Integral operators

First we give a

Proof ofi Theorem 1. Let C := v(Y)xl2. Let A be the union A := {CK(-,y) :
y £Y}U {-CK(-,y) : y £ Y} c L2(X). Then for 0 < e < 1, NM(e, A) <
2NM(e/C, KY) < D/er where D = 2MCr if C > 1 or e/C < 1, and so in
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any case for e small enough and thus for 0 < e < 1, possibly with a larger

constant D < co .

Let B be the unit ball in L2(Y, v). It will be shown that all functions in
Ak(B) are in the closed convex hull of A . For fi £ B let f = f+ - f~ where

f+ := max(/, 0) ,/":=- min(/\ 0). Then

(*)      JK(x,y)fi(y)du(y) = j f+(y)K(x,y) + fi-(y)(-K(x,y))dv(y).

Here /+ + /" = |/| > 0 and J \f\du < C(j \f\2du)x'2 < C by the Cauchy-
Bunyakovsky (-Schwarz) inequality. So multiplying and dividing by C, we

will show that AK(fi) is of the form AK(fi)(x) = / g(x)dP(g) where P is
a probability measure on A. There are nonnegative measures Px and P2 on

Y with dPx = fi+dv/C and dP2 = fi'dv/C so that (Px + P2)(Y) < 1. If
a:= 1 - (Px+ P2)(Y) > 0, take a fixed y = z and replace Pj by P, + adz/2,
/=1,2. Then P, + P2 is a probability measure on Y, and

^(/)(x) = J CK(x, y) dPx(y) + J -CK(x, y) dP2(y),

as desired. By assumption, Ky is totally bounded and so separable. The map

y i-» K(-, y) is measurable, so Ak(J~) is in the closed convex hull of A (e.g.,

[DiU, pp. 42, 48]). Also, A is bounded in L2(p), say ||x|| < T < co for

all x £ A , so AK(B)/T is included in the closed convex hull of A/T. It then
follows from [Du3, Theorem 5.1] that for any t > 2r/(2+r), there are constants

C,, C2 < co such that for 0 < e < 1,

NM(e,AK(B)/T)<C1(exp(C2e-')).

Thus NM(e, AK(B)) < C, exp(C3£-'), 0 < e < 1 , where C3 = C2V. Now
r < 2 implies 2r/(2 + 7*) < 1 , so we can choose 7 < 1 and apply Theorem A to

conclude that AK is of trace class.   □

Specializing Theorem 1, let X - Y - [a, b], p = v = Lebesgue measure.

Say that K(-, •) £ LipQ in the variable x iff

\K(x + h,y)-K(x,y)\<\hfG(y)

whenever x, x + h, y £ [a, b], where G £ L2[a, b]. The condition Lipf, in y

is defined symmetrically. Hille and Tamarkin [HT, Theorem 9.1] implies that

AK is of trace class if K(-, •) £ LipQ in either of its variables and a > \ .

This follows directly from Theorem 1: for simplicity suppose [a, b] = [0, 1].

Since the adjoint of a trace class operator is of trace class, and since the adjoint

of Ak is Al where L(x, y) = K(y, x), we can assume K is Lipa in x.

Let 0 < e < 1 and y := max(l, ||G||2) • Then for the usual metric on [0, 1],
NM((e/7)l/a,[0, 1]) < (y/e)x'a and

\K(x + (e/y)x'a, y) - K(x, y)\ < eG(y)/y

whenever all the arguments are in [0, 1 ], so

\\K(x + (e/y)x''f-)-K(x,-)\\2<e.

Since a > \ , it follows that £ < 2 and Theorem 1 applies.



METRIC ENTROPY CONDITIONS 179

Smithies [Sm] and Stinespring [St] extended Hille and Tamarkin's result in

a different direction. Stinespring showed that AK is of trace class if K(x, y)

is periodic of period 1 in x and

(3.1) /   /   / \K(x + h,y)-K(x,y)\2/hpdydxdh<oo
Jo Jo Jo

for some /? > 2.

Example. The condition r < 2 in Theorem 1 is sharp: Let K(x, y) := It(x , y)

where T := {(x, y) : 0 < y < x < 1}, on [0, 1] x [0, 1] with Lebesgue

measure. Then AK(f)(x) = f£ f(y) dy: Ak is the indefinite integral operator.

The functions fn(y) := e2niny, n = ±1, ±2, ... , are eigenvalues of Ak and

its adjoint and so of \Ak\ , with eigenvalues l/(2n\n\) for the latter, so Ak is

not of trace class, as is well known. For this K, we have NM(e, Ky) < 1/e2

for 0 < £ < 1 . So Theorem 1 fails for r = 2 .

On the other hand, the condition r < 2 is far from necessary, as the following

shows:

Example. Let p — v — Lebesgue measure on [0,1]. Let rn be independent

Rademacher functions, specifically, r„(x) = 1 if the 77th binary digit is 1

and r„(x) — -1 otherwise. Then for each 77, p(r„ = 1) = p(r„ = -1) =

5 and the rn are orthonormal in L2[0, 1]. Let 8 > 0 and K(x,y) :-

^Jn>\ n~^~Srn(x)r„(y). Then clearly AK is of trace class. Now KY consists of

those functions where each r„(y) can either be +1 or -1, independently of

the others. Thus, given £ > 0, if 2n~x~s > e then D(e, Ky) > 2" since we

can choose r,- = ±1 for j = I, ... , n and get 2" functions at distances more

than £ apart. Thus

D(e,KY) > exp((log2)(2/£)1/(1+(5» - 1).

So we have, for any r < 1, examples of trace class operators with logD(e, Ky)

> ae~r for some a > 0 and for 0 < £ < 1. In this sense Ky can be about as

large as Ak(B) itself can be for Ak of trace class. Also, since K is symmetric,

AK is selfadjoint and the corresponding class of functions Kx := {K(x, •) :

x £ X} is the same as KY .

This and the previous example show that no condition on the metric entropy

of Ky can characterize trace class integral operators.

Stinespring's hypothesis (3.1), although the condition /? > 2 is also sharp,

fails for the rank 1 operator AL with L(x, y) := rx(x)rx(y). The hypothesis

of Theorem 1 also fails for a rank 1 operator AK with K(x, y) = f(x)g(y)

whenever g is not essentially bounded. So there is still apparently much to

be done in finding useful conditions for the trace class property of integral

operators.

Some of the results of this paper appeared in the first author's thesis [G].

Acknowledgment

We thank Michael Marcus for telling us of his paper [Ma] and a referee for

remarks that helped shorten the proof of Theorem B.



180 J. M. GONZALEZ-BARRIOS AND R. M. DUDLEY

References

[C] B. Carl, Entropy numbers of diagonal operators with an application to eigenvalue problems,

J. Approx. Theory 32 (1981), 135-150.

[CS] B. Carl and I. Stephani, Entropy, compactness and the approximation of operators, Cam-

bridge Univ. Press, London and New York, 1990.

[DiU] J. Diestel and J. J. Uhl Jr., Vector measures, Math. Surveys Monographs, vol. 15, Amer.

Math. Soc, Providence, RI, 1977.

[Dul] R. M. Dudley, The sizes of compact subsets of Hilbert space and continuity of Gaussian

processes, J. Funct. Anal. 1 (1967), 290-330.

[Du2]   _, Sample functions of the Gaussian process, Ann. Probab. 1 (1973), 66-103.

[Du3]   _, Universal Donsker classes and metric entropy, Ann. Probab. 15 (1987), 1306-1326.

[F] X. Fernique, Regularity des trajectoires des fonctions aleatoires gaussiennes, Ecole d'ete de

Probabilites de St.-Flour IV-1974, Lecture Notes in Math., vol. 480, Springer, Berlin and

New York, 1975, pp. 1-96.

[G] J. M. Gonzalez-Barrios, On von Mises functionals with emphasis on trace class kernels, Ph.D.

thesis, Massachusetts Institute of Technology, Cambridge, MA, 1990.

[HT] E. Hille and J. D. Tamarkin, On the characteristic values of linear integral equations, Acta

Math. 57(1931), 1-76.

[K] A. N. Kolmogorov, A note to the papers of R. A. Minlos and V. Sazonov, Theor. Probab.

Appl. 4 (1959), 221-223.

[KT] A. N. Kolmogorov and V. M. Tikhomirov, e-entropy and (.-capacity of sets in function

spaces, Uspekhi Mat. Nauk 14 (1959), no. 2(86), 1-86; English transl. in Amer. Math. Soc.
Transl. 17 (1961), 277-364.

[Le] B. Ya. Levin, Distribution of zeros of entire functions, rev. ed., Transl. Math. Monographs,

vol. 5, Amer. Math. Soc, Providence, RI, 1980.

[Lo]      G. G. Lorentz, Metric entropy and approximation, Bull. Amer. Math. Soc. 72 (1966), 903-

937.

[Ma]     M. B. Marcus, The E-entropy of some compact subsets of lp , J. Approx. Theory 10 (1974),

304-312.

[Min] R. A. Minlos, Generalized random processes and their extension to a measure, Trudy

Mosk. Mat. Obshch. 8 (1959), 497-518; English transl., Selected Transl. Math. Statist,
and Probab., vol. 3, Amer. Math. Soc, Providence, RI, 1962, pp. 291-313.

[Mit] B. S. Mityagin, Approximate dimension and bases in nuclear spaces, Russian Math. Surveys

16(1961), no. 4, 59-127.

[Ol]      R. Oloff, Entropieeigenschaften von Diagonaloperatoren, Math. Nachr. 86 (1978), 157-165.

[Sa] V. V. Sazonov, A remark on characteristic functionals, Theor. Probab. Appl. 3 (1958), 188-

192.

[Scha]   R. Schatten, Norm ideals of completely continuous operators, Springer-Verlag, Berlin, 1960.

[Schw]  Laurent Schwartz, Probabilites cylindriques et applications radonifiantes, J. Fac Sci. Univ.

Tokyo Sect. IA Math. 18 (1971-72), 139-286.

[Sm]     F. Smithies, The eigen-values and singular values of integral equations, Proc. London Math.

Soc. (2)43(1937), 255-279.

[St]       W. F. Stinespring, A sufficient condition for an integral operator to have a trace, J. Reine

Angew. Math. 200 (1958), 200-207.

[Su]      V. N. Sudakov, Gaussian measures, Cauchy measures and e-entropy, Dokl. Akad. Nauk

SSSR 185 (1969), 51-53; English transl. in Soviet Math. Dokl. 10 (1969), 310-313.

CIMAT, Guanajuato 36000, Mexico

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307

E-mail address: rmd@math.mit.edu


