ADDENDUM TO "REMARKS ON WEAK COMPACTNESS OF OPERATORS DEFINED ON CERTAIN INJECTIVE TENSOR PRODUCTS"

G. EMMANUELE

(Communicated by Palle E. T. Jorgensen)

The idea (used in [1]) of embedding $X \otimes_{\varepsilon} Y$ into $X^{**} \otimes_{\varepsilon} Y$, when X is an \mathscr{L}_{∞} space can also be used to get the following results.

Theorem 1. Let X be an \mathscr{L}_{∞} space and Y a Banach space. Then $X \otimes_{\varepsilon} Y$ contains a complemented copy of l^1 iff Y does the same.

Proof. If l^1 embeds complementably into $X \otimes_{\varepsilon} Y$, then c_0 embeds into $(X \otimes_{\varepsilon} Y)^*$, a closed subspace of $(X^{**} \otimes_{\varepsilon} Y)^*$; then l^1 embeds complementably into $X^{**} \otimes_{\varepsilon} Y$, that is, a complemented subspace of some C(K, Y) space (see Theorem 2 of [1]). Hence, it is enough to apply the main result of [2] to get our thesis.

Theorem 2. Let X be a Banach space with X^* isometric to an L^1 space. If Y is a reflexive Banach space, then $X \otimes_{\varepsilon} Y$ has property (V) of Pelczynski.

Proof. Let T be an unconditionally converging operator on $X \otimes_{\varepsilon} Y$. The results of [3] imply that T^{**} is unconditionally converging, too. Hence T^{**} restricted to $X^{**} \otimes_{\varepsilon} Y$ is unconditionally converging; since $X^{**} \otimes_{\varepsilon} Y$ is complemented in some C(K, Y) space, it inherits property (V) of Pelczynski. Hence T^{**} , and so T, are weakly compact. We are done.

References

- 1. G. Emmanuele, Remarks on weak compactness of operators defined on certain injective tensor products, Proc. Amer. Math. Soc. 116 (1992), 473-476.
- 2. E. Saab and P. Saab, A stability property of a class of Banach spaces not containing a complemented copy of l^1 , Proc. Amer. Math. Soc. 84 (1982), 44-46.
- 3. ____, On unconditionally converging and weakly precompact operators, Illinois J. Math. 35 (1991), 522-531.

Department of Mathematics, University di Catania, Viale A Doria 6, 95125 Catania, Italy

Received by the editors January 29, 1992.

¹⁹⁹¹ Mathematics Subject Classification. Primary 47B99, 46M05.