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Abstract. The Euler-Jacobi formula gives an algebraic relation between the

critical points of a vector field and their indices. Using this formula we obtain

an upper bound for the number of centers that a planar polynomial differential

equation can have and study the distribution of the critical points for planar

quadratic and cubic differential equations.

1. Statement of main results

In this paper we apply the Euler-Jacobi formula to study two different kinds of

problems in the qualitative theory of ordinary differential equations: the num-

ber of centers for planar polynomial differential equations and the relationship

between the indices of critical points and their distribution.

This formula will be stated in the following section. Here we state the main

results in each of the subjects.

A. Centers for planar polynomial differential equations. We denote by Sfn >w

the set of all polynomial vector fields X = (P, Q) such that the degrees of P

and Q are 77 and m, respectively. Without loss of generality we can assume

that 77 > 777. We denote by E(-) the integer part function.

Our aim is to study the number of centers that Ie/„]ffl can have. Define

Cnm = maximum number of centers for X £ Sf„, m,

Pn,m = maximum number of points with index + 1 for X £ Sfntm ,

Nn,m — maximum number of points with index - 1 for X £ Sfn m .

It is obvious that Cnm<Pnm. The numbers Pnm are studied in [K, CL].

We have that
' (77 + 1)777

-——-—    if 77 = rn (mod 2),
P       — I 2"'m ~   1    77777

—- if 77 ̂  777 (mod 2).
v    2

Our main result can be stated as follows:
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Theorem A. The number C„, „ for n > 1 satisfies

(n2+l\ n2 + n
E\ -^- ) - C"." <Pn,n~ 1 = -2-*'

We summarize the above results:

Theorem B. The numbers C„ t m satisfy

(i) Cn,m = !f ifin^m (mod 2);

(ii) E(m±±)<Cn,m<Pn,m = (-^ ifinf^m, n = m (mod 2);

(iii) E(£p)<C„,n<Pn,„-l = £**■-I ifin = m, 77 >1.

Note that for most values of 77 and 777 there is a gap between the given upper

and lower bounds for Cn,m- In fact except for the case n ^ m (mod 2) the

only C„ t m known are Co, 0 = 0, C, _, = 1, C2t2 = 2, and C3,3 = 5 . Among
these four cases the first two are obvious. The third one is a classical result on

quadratic systems (see [C]), which is proved by studying the vector field on the

straight lines joining the critical points.

The proof that C313 = 5 and, in general, the proof of Theorem A, needs

more powerful tools. This is where we need the algebraic constraint given by the

Euler-Jacobi formula. In fact the proof of Theorem A shows that for IeJ„]B,

the vector field has at most Pnn-l critical points with index +1 on the curve

div AT = dP/dx + dQ/dy = 0. Hence, a result similar to Theorem A, with weak

focus instead of centers, holds.
On the other hand the lower bounds given in Theorems A and B are realized

by Hamiltonian vector fields, that is, for vector fields X = (dH/dx, —dH/dy)

£ %?n,m, where 77 is a polynomial of degree n + 1. In fact, it is proved in

[CGM] that for these Hamiltonian vector fields, the lower bound E(nsj^) is

actually the maximum number of centers that a planar polynomial Hamiltonian

differential equation in Xn,m can have. Conti has already observed that Cnn>

E(n-2±^-) and conjectured that the equality holds.

Finally we stress that the easiest problem that remains to be solved is to find

C4>4 . By Theorem A, 8 < C44 < 9.

B. Indices of critical points and their distribution. For quadratic systems, i.e.,

X £ Sf2,2, we have the following:

Berlinskii's Theorem (see [B]). Suppose that X £ Sfi,2 has four real critical

points. If the quadrilateral with vertices at these points is convex then two opposite

critical points are saddles (index -1) and the other two are antisaddles (nodes,

foci or centers, index +1). But if the quadrilateral is not convex then either

the three exterior vertices are saddles and the interior vertex an antisaddle, or

vice-versa.

A proof of this theorem using coordinates can be bound in [C], and a different

one, using pencils of conies in [S].

For X £ 3?n,m we denote by Ax - A the set {p £R2: X(p) = 0} of critical

points of X. Given a subset of K2, B, we denote by B its convex hull, by

dB its boundary, and by #77 its cardinal.

Set Aq = A, and for / > 1 set A, = At-\ - (/l,-, n cM,_,); there is a last
integer p for which Ap+X = 0 .
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Figure 1. Example of configuration (4; 4; 1)

We will say that A has configuration (K0; Kx; • • • ; Kp) where Kj is the

natural positive number defined by

Ki = #(At n dAi).

Observe that this is not the definition of configuration used in [Ko]. For

example, if we take the system considered in [Ko], x = -x(l + \y - \y2 -vx2),

j/ = ();+l)Cv2-}>-2x2),then Ie/3,3 and A = {(0, 0), (0, ±1), (±\, -1),

(±1, 2), (±\/3, -2)}. Using our notation its configuration is (4; 4; 1), see

Figure 1.

We will say that A has configuration (A"0; Kx; • • • ; Kr; *) if we do not

specify for the values of A/ for i between r + 1 and p .

We are also interested in the study of the indices at the critical points of X .

We will say that critical points of X, which belong to Aj n dAj, are on the ith

level.
If we assume that X £ Sfn,m is such that #AX = nm , then the indices are

± 1, and in this case we substitute the number A", corresponding to the /th

level by (nx +, n2- , n,3+, ... , nf*—) where 77/ are positive integers such that

^2j nj = Ki. When AjOdAj is a polygon, these numbers take into account the

number of consecutive points with positive and negative indices, viewing the
/th level oriented counterclockwise; 77/ corresponds to the string with largest

number of consecutive points with positive indices. If there are several strings

with the same number of points we choose one such that the next string (that has

points with negative indices) is as large as possible, and so on. When AjHdAj is

a segment, the numbers 77/ take into account the number of consecutive points

with positive and negative indices, beginning at one of its endpoints.

The example in Figure 1 has configuration (4+; +, 3- ; +) where the num-

ber 1 is omitted.

In this notation, Berlinskii's Theorem can be stated as follows:

Berlinskii's Theorem. Assume that Ie/2,2 and #Ax = 4. Then

(1) Y,aeA ix(a) = 0 if and only if the configuration ofi the set A is (4) =

(+. -,+. -);
(2) I Y^aeA '*(fl)l = 2 if and only if the configuration of A is (3; 1). 7t7 this

case it can be either (3+; -) or (3- ; +).

In the last section we will give a proof of the above result, different from the

proofs that appear in [C, S]. We will also prove the following generalizations:
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Theorem C. (a) Assume that X £ ^3>2 and #AX = 6. Then Y,aeA ix{d) = 0
and only the following configurations are possible:

(i) (6) = (+,-,+,-,+,-),
(ii) (4;2) = (2+,2-;+,-),

(iii) (3; 3) = (2+,-;+,2-) or (+,2-; 2+,-).

Furthermore there exist X £ %%t2 with the above configurations.

(b) Assume that X £ JS,3 and #AX = 9. Then | J^aeA ix(a)\ £ {1, 3}.
(bl) If | YlaeA ix(d)\ = 3 077/y the following configurations are possible:

(i) (5;3;l) = (5+;3-;+) or (5-; 3+;-),
(ii) (4;*) = (4+;*) or (4-;*),

(iii) (3;*) = (3+;*) or (3-;*).

Furthermore there exist examples ofi configurations:     (5; 3; 1), (4; 4; 1),

(4; 3; 2), and (3; 6).
(b2) If I YlaeA ix(d)\ = 1 there exist examples of the configurations: (8; 1),

(7; 2); (6; 3); (5; 4); (5; 3; 1); (4; 5), (4; 4; 1), (4; 3; 2); (3; 3; 3).

Figures 2, 3, and 4 show examples of most of the configurations considered.

In these figures we plot the points of P(x,y) = 0 with continuous trace and

the points of Q(x, v) = 0 with discontinuous trace.

-.- ,<      -I-     , , s
/ \

(6) = (+, -, +, -, + -)       (4; 2) = (2+, 2- ; +, -)       (3; 3) = (2+, - ; +, 2-)

Figure 2. Configurations for l£j)i2

v ! 7 \ Vy
+\^y+ \    \+_i'

I- _l±_=Z^y?_\+_

(5; 3; 1) = (5+; 3-; +) (3; 6) = (3+; +, -, +, -, +, -)

Figure 3. (5; 3; 1) and (3; 6) configurations for X £

^3,3 with ZaeAix(a) = 3
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+ 1-        1+ 1+1-1+ s- -  ^ „ ̂    ^     ^y

_.-__+__.- _,.-_+_v-_i _r__t_--.

_.+ __r__.+ X'" +__"-_ +

(8;1) (7; 2) (6; 3)

It--/-it

(5; 4) (5; 3; 1)

s"Wf' rXj+      /'/ V\
/+—•=—^+ '    • v*—-^ :    —v—

(4; 5) (4;4;1) (4; 3; 2)

i_

^'      I   \

(3; 3; 3)

Figure 4. Configurations for X£%?t,^ with *ff,alEAix(d)=l

We remark that there are some problems that remain to be solved in con-

nection with the problem of determining the possible configurations of A for

X £ ^3,3. One of the more interesting is whether it is possible to have (9) with

I YaeA ix(d)\ = 1 occurring as a configuration. Note that we have not studied

all possible combinations of indices in the /th levels. For instance, the (6; 3)

configuration with Y*aeA ix(a) = 1 can have at least the two different distri-

butions of indices (2+, - ,2+,-;-,+, -) and (3+,-,+,-;+, 2-) as
depicted in Figure 5.

Some partial results can also be proved for n -dimensional vector fields by

using the same techniques. We have

Theorem D. Let X = (Px, P2, ... , P„) be a polynomial vector field on R" , with

degP, = deg7>2 = 2 and degP, = 1 for / > 3. Then if #AX = 4, the four
critical points are in a plane of R" (770/ necessarily invariant), and on this plane

Berlinskii's Theorem holds.



156 ANNA CIMA, ARMENGOL GASULL, AND FRANCESC MANOSAS

(2+, -, 2+, -; -, +, -) (3+, -, + -; +, 2-)

Figure 5. Different examples of (6; 3) configurations

We omit the proof because it is essentially the same as our proof of Berlin-

skii's Theorem.

2. Preliminary results

Remember that for a simple critical point p of a differential equation in R2,

(x,y) = X(x,y) where X = (P, Q),

does not vanish and sgn(J(p)) is the index of X at p . As usual we will denote

it by ix(p) = i(p).
The Euler-Jacobi formula gives a nonobvious relation between the critical

points of a polynomial differential equation and their indices, assuming that all

of them are simple and lie in the complex plane. A proof of it can be found in
[AVG]orin [GH, p. 671].

First we enunciate a corollary of Bezout's Theorem.

Proposition 2.1. Consider two algebraic curves P = 0, (2 = 0 with degrees n

and m respectively. Then the number ofi nondegenerate solutions of the system

P = Q = 0 is finite and less or equal than nm .

In fact Bezout's Theorem ensures that in the complex projective plane (and

taking into account multiplicities), if this number is finite, it is exactly 77777.

The Euler-Jacobi formula deals with the case in which all these solutions are

simple and lie in the finite part of the complex projective space. Now we can

enunciate this formula for the two-dimensional case.

The Euler-Jacobi formula (EJ formula). Consider a system of two real poly-

nomial equations of degrees n , m in 2 complex unknowns

P(x,y) = Q(x,y) = 0.

If we assume that the set of roots of the system A contains exactly 77777 ele-

ments, we have that J = deg^f'®)) does not vanish on A . Then for every

polynomial 7? of degree less than 77 + 777-2 we have

V*^=o.
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Some results that relate critical points of a polynomial differential equation

with their indices can be found in [K], see also [CL].

Theorem 2.2. Let X = (P, Q) be a polynomial vector field on R2 with finitely
many critical points. Then

(i)  \YlaeA^x(d)\ < min(77, m); furthermore, if #A = nm then we have

\\ZaeAix(a)\ = nm   (mod 2).

(ii) 7/ 77 ̂  rn (mod 2) and #{a £ C2: P(a) = Q(a) = 0} = 77777 then

(m) lZaeA\lx(a)\<nm.

(iv) If n  = m (mod 2), assuming that m  <  n, then  Pn,m,Nn,m  <

(m + nm)/2.
(v) If n^m (mod 2) then Pn,m, N„tm < nm/2.

From the work of Poincare there is a geometrical way of knowing the indices

at the critical points.

Proposition 2.3. Let X = (P, Q) be an analytical vector field defined on I2.

Let p, q be two consecutive critical points on a real connected component of

P = 0 such that J(p)J(q) ^ 0 and P = 0 has no multiple points between p
and q. Then J(p)J(q) < 0.

This proposition is used systematically and without being explicitly men-

tioned in the construction of examples made in §3. A proof of it can be found
in [CL].

We will use (sometimes also without being explicitly mentioned) this well-

known technical lemma (see [Ch]).

Lemma 2.4. Let X = (P, Q) be a polynomial vector field with max(degP, deg<2)

- n . If X has n critical points on a straight line L(x, y) = 0, this line is an

isocline. If X has n + 1 critical points on L(x, y) = 0 then this line is full of
critical points.

Finally we utilize Newton's classification (see [BK]) to draw the sets P = 0
and Q = 0, when P and Q are cubics. Following this classification a cubic that

contains no straight lines can be represented, in a suitable cartesian coordinate,

in one of the 4 normal forms:

I: xy2 + exy = Pi(x) - ax3 + bx2 + cx + d,

II: xy = P3(x),

III: y2 = Pi(x),

IV: y = Pi(x).

3. Proofs of Theorems A and B

The lower bound for Theorems A and B is achieved by the following example.

Example 3.1. The Hamiltonian system

x=y(y-l)---(y-(n-l)),

y = (-l)m-"+xx(x - 1) • ■ • (x - (m - 1)),

has exactly E(nn^-) centers.
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Proof. Clearly this system has 77777 critical points. For all 77 and w the deter-

minant of the linear part at (0, 0) is positive, so ind(0, 0) = +1. Since the

indices on each straight line x - i = 0 for / = 0, ... , 777 - 1 and y -j = 0 for

j = 0, ... , 77 - 1 are alternated, we obtain E(M2±^) points with index +1.

Note that all simple critical points with positive index for a Hamiltonian system

are centers; so we obtain the desired result.   □

An easy upper bound for C„, m is given by the number of critical points of

index +1, see [CL, Theorem 1.3]. We state it in the next lemma.

Lemma 3.2. Let X be in Sfn,m- Then Cnm<Pnm where

{(77 + 1)777

-—2- P = m (m°d 2)»

77777              / 77777+1 \ ...
— =E\—-—1 ifn^m (mod 2).

From Example 3.1 and Lemma 3.2, Theorem B(i) and (ii) follow. To finish

the proof, therefore, it only remains to study the case Sfn,n- For this case we

have that
/TT^+IA 772 + 77

so we have to improve the upper bound, substituting it for 7>„ „ - 1.

Assuming that C„,„ = Pnn - (n2 + n)/2 we will get a contradiction. We

will need some preliminary lemmas and will use the following notation: for

Rx, ... , Rk £ R[x, y] we denote by V(RX, ... , Rk) the set of common real

zeros of all of them. When there is no confusion, given X = (P, Q), we will

denote by A = V(P, Q) and by A+ (resp. A~) the set of critical points of X

that have positive (resp. negative) index.

Lemma 3.3. Let X = (P, Q) £ %?n,n be a vector field with Pnn critical points

with index +1. Then X has n2 critical points and all of them are simple.

Proof. Let px,p2, ... , P(ni+n)/2 De the critical points of X with index +1,

and let qx, q2, ... , qr be the other real critical points of X. We claim that

r = (n2-n)/2.
Since the sum of the indices (resp. the absolute values of the indices) of X

at all its critical points is bounded by 77 (resp. n2), we have that YJj=\ ix(Qj) +

(n2 + n)/2 < n (resp. J2 \ix(Qj)\ + (n2 + n)/2 < n2), and it can be easily deduced

that

(l) !>(«,) =^.
7=1

Let p(qf be the multiplicity of X at q}. From [CL, Lemma 1.4] we have

that \ix(Qj)\ < \Jp(Qj) < P(Qj) for each j £ {1,2,... , r}. Applying Bezout's
Theorem we obtain

2 r («2+n)/2 r

(2) ^-±^+ !>(«;)<    Y   /^) + X>(<7,)<«2-
j=\ i=\ j=\
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From (1) and (2) we have that

7=1 7=1 7=1 7=1

i.e., all the inequalities are in fact equalities. In particular, $3>=i y/P-tij) =

YJj=x MQj) - Since p(qf > 1, we have that p(qf = 1 for all j £ {1, 2, ... , r}

and the equality J2j=i M(Qj) — ("2 _ w)/2 implies that r = (n2 - n)/2.

From the claim it is clear that X has n2 critical points and in this case it is

known that all of them are simple.   □

Lemma 3.4. Let X = (P, Q) £ 3?n,n with #(V(P, Q)) = n2, and let R be a
polynomial with degree less than n . Then V(P, Q) gt V(R).

Proof. Suppose that V(P, Q) c V(R). Then #(V(Q,R)) > n2 and from
Bezout's Theorem it follows that Q and 7? have a common factor. Let C

denote a maximal common factor of R and Q and assume deg(C) = k < n .

Then we can write 7? = C7?, and Q — CQX , with deg(2i = n-k and degT?, <
n - k . Since P and Q have maximal intersection we get #(V(C, P)) — nk

and #(V(QX, P)) = (n - k)n . Therefore #(V(RX, Qx)) > (n - k)n , because
A c V(R). Also from Bezout's Theorem we get that Rx and Qx have a

common factor. This gives a contradiction with the fact that C is a maximal

common factor of 7? and Q.   □

In the following two lemmas we assume that n > 2 .

Lemma 3.5. If X £%?n,n has n(n + l)/2 critical points with positive index, the

corresponding n(n - l)/2 critical points with negative index cannot belong to

any V(R) for R with degR<n-2.

Proof. Assume that X has 77(71 + l)/2 critical points with positive index and

77(77 - l)/2 critical points with negative index, and suppose that A~ c V(R)

with deg(7?) < n -2. Then deg(7?2) < 2n - 4 < 2n - 2 and we can apply the

Euler-Jacobi formula to 7?2. We get

srR2(xf= v RHxf    sr ^M= v R2{x) = 0
^ J(x)       J^   J(x)       J^   J(x)       J^   J(x)
xeA     v   '       xeA-     v   '      xeA+     v   '       xeA+     v   '

Since J(x) > 0 for all x £ A+, it follows that R(x) = 0 for all x £ A+ .
Thus, we obtain A c V(R) in contradiction with Lemma 3.4.   D

Lemma 3.6. For every set B of n(n - l)/2 - 1 points ofi R2 there exists a

polynomial R £ R[x, y] with deg(R) = n-2 and B c V(R).

Proof. Since given a set B of k(k + 3)/2 points in R2 there always exists a

polynomial 7? with degree k and 77 c V(R) (see [F]), it suffices to show that

77(77 - 1)     ,      1 .
V 2    ' -l<^(n+l)(n-2),

which holds for all 77 e Z.   n

Proposition 3.7. If X has 77(77 + l)/2 critical points with positive index then

they cannot belong to any V(R) for R with deg(7?) < n — 1.

Proof. Let R £ R[x, y] with deg(R) < n - 1, and suppose that A+ c V(R).
Since #(A+) = 77(77+ l)/2, we have by Lemma 3.3 that #(A~) — 77(77 - l)/2.
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For all x £ A~ let Tx be the polynomial given in the above lemma such that

(A-\{x}) c V(TX) and deg(Tx) = 77 - 2. Then deg(RTx) = 2n-3<2n-2,
and we can apply the Euler-Jacobi formula to RTX :

n = V Tx(y)R(y) = Tx(x)R(x)

Hence, R(x)Tx(x) = 0. From Lemma 3.5, Tx(x) ^ 0 and we obtain jc e

V(R). Since this argument is valid for each x £ A" we obtain A c V(R) in

contradiction with Lemma 3.4.   D

Finally we will need the following theorem, which is proved in [CGM].

Theorem 3.8. Let X be a Hamiltonian vector field in %?n,m- Then the maximum

number ofi centers ofi X is E(rmf^L).

Proof'oj Theorem A. Now suppose C„„ = Pn,n = (n2 + n)/2 and we will derive

a contradiction. If 77 = 2 the assertion of Theorem A is well known. Assume

n > 2. Then A+ c K(divA"). If divX = 0 then the theorem follows from
Theorem 3.8. If divZ ^ 0 then deg(divA') < 77 - 1 and Theorem A follows
from Proposition 3.7.    □

4. Generalizations of Berlinskii's Theorem

The new proof of Berlinskii's Theorem that we present gives the key ideas

that we will apply in the proof of Theorem C.

First of all we remark that if a configuration exists for some X £3?„,m with

#Ax = nm it is possible to construct the same configuration but interchanging

points with index 1 with points with index -1 . It is enough to take Y =

(-Xx, Xf) instead of X = (Xx, Xf). So in all cases we will restrict ourselves

to systems such that ~52aeA ix(a) > 0.

In all proofs we will denote by {Px, ... , Pnm} the points of A if we have no

information about their indices, by {7>,+ , ... , Pjf} the set of points in A with

positive index, and by {P^, ... , Pf} the set of points in A with negative

index. Also we will put Vf": for the straight line Lvf"Ax,y) = 0 through

the points Pf and Pf where v, w £ {+, -, 0} and i £ {I, ... , k}, j £

{1,...,/} . Finally we denote by U/ any straight line through a point Pf £ dA

such that for all q £ A , Lvt(A) > 0, and it is zero only at q .

New proof ofi Berlinskii's Theorem. We have that X £ Sf2^2 and #AX = 4.

Assume that Y,aeA **(a) = 0- If we apply the EJ formula to L - L\\ we

have that

L(P-)     L(Pf)

J(Pf)     J(Pf)
Since sgn(J(Pf)) = sgn(J(Pf)) = minus, we have that L(Pf)L(Pf) < 0

(note that \L(P^X)\ + |L(y?2-)| must be different from zero because if X £

^2,2 and #AX < 00 by Lemma 2.4 it is impossible that 3 critical points are

aligned). Hence Pf and Pf lie on opposite sides of L. Then A must have

configuration (4) = (+,-,+,-).

Now assume that the configuration of A is (4). Also we put the subscripts of

Pi in such a way that Px, P2, P$, P4 are ordered counterclockwise in dA . Set
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Li = Lt,t+i and consider the subscripts in Z/4Z. Again using the EJ formula

we have
Lj(Pi+2)     L,{PM)

J(Pi+2) + J(PM)

Since sgnL,(7>(+2) = sgn Li(PM), we have that sgnJ(Pi+2) ^ sgn J'(Pi+f).
Hence configuration (4) must be (+,-,+, -) and, of course, YlaeA *x(a) = 0.

Assume that J2aeAix(a) = 2.   Take the three straight lines Z, = L\\,

L2 = L++3, and L3 = L2\ . By the EJ formula for 7 = 1,2,3 we have

Lj(Pf)     Lj(Pf)
J(Pf) + J(Pf)        ■

Since sgn J(Pf)J(Pf) < 0, we have that Pf and Pf lies on the same side of

L,: = 0. Hence Pf must be in the interior of the triangle with vertices Pf .

Then the configuration of A is (3; 1) = (3+; -).
Consider now that the configuration is (3; 1). Using exactly the same argu-

ments that in the proof of the case in which the configuration is (4) but only

for the points {7*,, P2, P3} that are in dA we have that (3; 1) = (3+; -), so

EaeAix(a) = 2.   a

Proof of Theorem C. The proof of this theorem will follow in two different

steps. In the first one we will give proofs of which configurations are possible

and which are not possible. In the second one we will give examples of possible

configurations.

Step 1. (a) From Theorem 2.2(ii) we see that if X £ ^^ then YlaeA z*(a) =

0. Assume that the configuration is (6) and that the subscripts of the points of

A are in such a way that 7*,, P2, P3, P4, P5, Pf, are ordered in dA in coun-

terclockwise sense. Also we consider the subscripts in Z/6Z. Take Qt(x, y) =

Ljj+X(x, y)Lj+2ti+i(x, y). The EJ formula applied to (7; gives

Qi(Pi+4)     Qj(Pi+5) =
J(Pi+4) + J(Pi+5)

so J(Pi+A)J(Pi+5) < 0 for all /. Hence the indices of Pj and Pj+X are different
and the configuration of A must be (6) = (+,-,+,-,+,-).

Consider now that A has configuration (5, 1). Assume, for instance, that

the point of A- dA has negative index. Then dA has two consecutive points

with positive index Pf and Pf .
First of all note that if A has 3 points Px, P2, and 753 on a straight line

L, taking L45 and applying the EJ formula to L(x, y)L45(x, y) we have that

7*6 £ L45, so the six critical points are on two straight lines. This case is easier

than the study of the general configurations of A and is not treated explicitly

during the proof.
Take Q(x, y) = L++2(x, y)L+(x, y). By the EJ formula

h XT)
but this is in contradiction with the fact that all Pf lies on the same connected

component of R2 - {Q(x, y) = 0} and J(Pf) < 0 for 7 = 1,2,3. Hence if
X e ^3,2, Ax has no (5, 1) configuration.
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Assume now that A has (4; 2) configuration. Denote by Px, P2, Py, and P4

the points of dA , ordered in counterclockwise sense. Applying the EJ formula

to Q(x,y) = Ll>2(x,y)L3i4(x,y) we have

Q(Ps) . Q(Pe) = n
J(P5) + J(P6)       ■

Since 7>5 and Pf, lie on the same connected component of R2 - {Q(x, y) = 0},

we have that P5 and Pf, have opposite indices. Then in dA there are two points

with positive index Pf and Pf and two points with negative one Pf and Pf .

Now we will prove that configuration (+,-,+,-; H—) is not possible.

Assume that this is the case and that Pf , Pf , Pf , Pf are the points on dA
counterclockwise.

By the previous consideration we can assume that dA is a quadrilateral.

By applying the EJ formula, iteratively, to

Lff(x,y)Lff(x,y),    Lff(x,y)Lf+(x,y),    L+f(x,y)L2f(x,y),

Lff(x,y)Lff(x,y), and    Lff(x,y)L2hf(x,y),

we obtain that there is no place for Pf in A , so we have a contradiction.

Now consider that the configuration of the set A is (3; 3). If Px, P2 and Pt,

are the critical points on dA, then by applying the EJ formula to Q(x, y) =

Lx2(x, y)L2i(x, y) and since 7>4, 7>5 have to be in the same connected compo-

nent of R2 - {Q(x, v) = 0}, we obtain that they have different indices. So we

can assume that (3; 3) has configuration (2+, -; +, 2-) and the proof follows.

(b) That | Y,aeA lx(a)\ G{1,3} if X £ JS,3 follows from Theorem 2.2(i).
Assume that J2aeA ix(a) = 3. First of all we will prove that there are

no critical points with index -1 in dA. Assume that Pf £ dA. Take

C(x,y) = L~(x, y)(L~f (x, y))2. Since C(Pf) > 0, / = 1 ,„. , 6, apply-

ing the EJ formula to C we get a contradiction. Hence #(A HdA) < 6 and the

configuration of A must be (K+; *) with A" < 6 .

Consider the case in which #(A n dA) = 6. Applying the EJ formula to

C(x,y)    =   L\2(x, y)L^f(x,y)L^(x, y)   we  have  a  contradiction,   so

#(A n dA) < 5 . Assume that #(A n dA) = 5 , put {Pf , Pf , Pf , Pf , Pf} =
And A , and take a conic Q(x, y) through them. Since all these points are in the

boundary of a convex set, we have that the other four critical points are in the

same connected component of I2 - {Q(x, y) = 0}. Assume now that there is a

point Pf in the 1st level of A . Taking L^~K where Pf is a point in AC\dAx

contiguous with Pf and applying the EJ formula to Q(x, y)L(t~K(x, y), we

get a contradiction; so the configuration of A is (5+; 3-; +).

Step 2 (Examples). In most examples instead of explicitly giving the two

polynomials P(x, y) and Q(x, y) such that

(x,y) = X(x,y) = (P(x,y),Q(x,y))

has the configuration considered, we present a picture of the real points of

P(x, y) = 0 and Q(x, y) = 0; see Figures 2, 3, and 4.
Examples of configurations for systems X £ ^ _ 2 are shown in Figure 2.

Consider now X £ ^3,3 and \f,aeA 'x(a) = 1 • Examples of configurations

(5; 3; 1) and (3; 6) are given in Figure 2. Configuration (4; 4; 1) is realized for
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the system considered in the introduction. The configuration (4; 3; 2) follows

from the perturbation x = -x(l + \y-^y2+x2), y = (y + l)(y2-y-2x2)-ey

for e > 0 of the above system (see [Ko]). We remark that the example with

configuration (3; 6) comes from [YY], where the configuration is called type

(6; 3).   □
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