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Abstract. In his study of a particular Lorenz-like semiflow, S. F. Kennedy

introduced a two-parameter family of endomorphisms of the circle with two

marked points. These are piecewise affine double coverings of the circle with a

pair of discontinuities, which all have topological entropy log 2 . We answer the

question Kennedy raised about when two such maps are topologically conjugate.

1. Introduction and statement of the results

In the wake of Williams's work on the Lorentz equations [7], Kennedy has

described the semiflows on the branched 2-manifold W represented in Figure

1 (on the next page), where the sketch of phase portrait illustrates the main

features of these semiflows [3]. Following backward the branches of the stable

manifold of O, one gets two first intersection points at P and Q with the

circle C. The circle C with its two marked points is a natural section of

this semiflow, so the topological dynamics of the semiflow can be captured by

studying K-maps, i.e., double coverings of the circle with two marked points

where the map can be discontinuous, and such that each arc between the marked

points is sent to the full circle less one point. In this note, we shall restrict

ourselves to the case of expanding A"-maps with a constant factor 2 on the two

arcs of continuity. Opening the circle at one marked point to form the interval

[0, 1) with a marked point at \ means that we shall examine the two-parameter

family f(a,bf- [0> U ~* [0> 1)» where

f(a,b)\[oAI2)(x) = (2x + a)    modi

and

•f(«.*)l[i/2, i)(-x) = (2x + b-\) mod 1.

For simplicity, we shall also denote by {fia,b)} the corresponding family of

K-maos. Following a question raised by Kennedy in [3, 4] we shall more pre-

cisely describe conditions on the parameters, which are necessary and sufficient

for two A^-maps in this family to be K-topologically conjugate, i.e., be the same

up to a continuous change of coordinates, which preserves the set of marked

points.
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Figure 1

Remark. The topological conjugacy of semiflows on W of the kind described

by Kennedy (see Figure 1) is equivalent to the K-topological conjugacy of the

associated A-maps.

Often we will be switching from working with A-maps to working on the

semi-open interval with one marked point, and vice versa, with no particular

notice. With this freedom in switching between a space and a fundamental

region of its covering space, the parameter space for the A-maps, which is

the two-torus T2 = R2/Z2, can equivalently be taken as (for instance) the set

S = [0, 1) x [0, 1); we are interested in exhibiting a subset P of S, which

represents all possible A-topological behavior, where no two points correspond

to the same A-topological behavior of the circle map, and which is minimal in

the sense that no subset of P represents all possible A-topological behavior.

Call such a set a minimal parameter space. Our main result is the following:

Theorem 1. The convex set K defined as the union ofi the three regions {\ < a <

i, \-a<b<a}, {\<a<\, 0 < b < a}, and {| < a < 1 , 0<b <\-a)
is a minimal parameter space for the family of K-maps {fia,b)} ■

The region K is represented in Figure 2, where a heavy line on the boundary

means that this line belongs to K. The circled numbers in Figure 2 help to

locate, in the parameter space, the (a, b) pairs corresponding to the graphs

represented in Figure 3. The pairs numbered 8 and 9 do not belong to K: 9 is

A-conjugate to 7, and 8 to 2.
Notice that the change of coordinate x —> 1 - x A-conjugates the maps

fi(a,b) and fi\/2-b,\/2-a) and that on the circle identified with [0, 1]/-1 ~ 1

the change of coordinate x —» (x + \) mod 1 A-conjugates the maps fia.b)

and fia.b) ■ This allows to replace S by the closure Ki of K without loosing

any sort of dynamics up to A-topological conjugacy.

Remark. When b — (a- \) mod 1 , fia,b) has the same formula as an ordinary

double covering map of the circle, and all these maps fi(a,b) would represent
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the same topological dynamics as double covers; however, these fia t b) 's are not
necessarily AMopologically conjugate (i.e., topologically conjugate as AT-maps),
and Theorem 1 tells us that indeed they are not A:-conjugate.

Let us then mention that all maps with b = (\-a) mod 1 and a > \ form

a single A"-conjugacy class represented in K by the point (a, b) = (\ , \); for
instance: for such parameter values, the circle splits into two arcs bounded by

the images of 0 and \, where the map acts as f(x) = 2x mod 1 does on
[0, 1). This allows us to reduce further the parameter space from Kj to K,
and it only remains to establish that no more reduction can be made.

This impossibility of further reduction will be proved using ideas from knead-
ing theory [5], and we now recall what we need from this theory, in a form

suitable for our purpose. Hence, for any map fi(a,b) considered as a map on



288 ROZA GALEEVA AND CHARLES TRESSER

the interval [0, 1), and any x £ [0, 1), the address of x is

a(a,b)(x) = -W    if 0 < x < (1 - a)/2,

fl(«,6)(*) = tf if(l-a)/2<x< 1/2,

a(a>6)(x) = P if l/2<x<(3-2/J)/4,

fl(fl,6)W = G if (3 - 2/3)/4 < x < 1.

Notice that some addresses do not correspond to any point when a = 0 or

b = 0. The itinerary of x e [0, 1) is the sequence

I(a,b)(x) = (a(a,b)(x)> &(a,b)(f(a,b)(x)) > &(a , b)(fi(a, b)(X)) ' •••)»

where g°" = g°^o("_1) and g°° = Id for any map g. The set of infinite words

in {M, N, P, Q} is equipped with the alphabetical order on words induced

by M < N < P < Q. Since the map f(a ^ is increasing on its segments of

monotonicity, the map x h-> I(a,b)(x) is weakly order preserving, i.e.,

■*<?=»/(<«.*)(*) </(a.*)00-

Since /|a fe) = 2 on the segments of monotonicity, x i-> 7(x) is in fact strongly

order preserving, i.e.,

x<j7=*/{a>/j)(x) <I(a,b)(y)-

Then the kneading invariant of 7(a,6) is the pair

K(a,b) = (I{a,b)(a),I(a,b)(b + \)) = (K~(a, b)K+(a, b)),

which is obviously invariant under any order preserving change of coordinate
on [0, 1). For pairs in an ordered set, we declare

(X,Y) = (X',Y')<*X = X'\ and Y = Y'

and

(X, Y) > (X' ,Y')<*X>X' and Y > Y' or X > X' and Y > Y'.

From the above discussion on reductions of the parameter space due to simple

changes of variables, Theorem 1 is a consequence of

Theorem 2.  K(a, b) — K(a', b') if and only if

• either (a, b) = (a', b'),
• or b = | - a and V -\- a' with \ < a < 1 and j < a' < 1.

The next section is a proof of Theorem 2. This proof is elementary but

definitely analytic. A main idea when studying parametrized families of maps

is that the growth of the derivative with respect to the parameter is easier to

control when there is some growth of the derivative with respect to the variable.

After some successes for quadratic maps (see, e.g., [1]), simpler examples in-

volving piecewise affine maps have been studied in [6, 2]. Because the derivative

f\a &)(x) *s a'ways equal to 2, our case is an even more straightforward example
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for the ntethod, but we still do not know if a more topological approach could

yield a proof of Theorems 1 and/or 2.

2. Proof of Theorem 2

The parametrization of the family {fia,b)} was natural in that it kept the

symmetries of the original semiflow problem. We now change the scale to sim-

plify the computations and, more importantly, the parametrization in such a

way that proving Theorem 2 amounts to showing a strict monotonicity property

of the kneading invariant. Hence we shall deal with the family F(ABy. [-1, 1[
-»[-l, l[,with (A,B)£[-l, 1) x [-1, 1) defined by

'2x + ^ + 2 for -1 <x<(-^-l)/2,

) 2x + ^ for (-A- l)/2<x<0,

{A'B){X)~)2x + B for0<x<(l-77)/2,

l2x + P-2 for(l -B)/2<x< I.

The relation between the two parametrizations is given by the formulas

A = 2-a-I,       B = 2-[(\ + b) mod 1] - 1.

The kneading theory addresses for this family are defined like those for the

family {fia,b)} ■ A main virtue of the new parametrization is that

(A, B) < (A',B') => (F{A>B)(-l),F{AtB)(0)) < (F{A,tBI)(-l),F{A,>BI)(0))

and

(A,B)< (A', B') and x < y =» fA,B)(x) < I(A>,B')(y)■

It is then clear that Theorem 2 is equivalent to

Theorem 2'.  K(A, B) = K(A', B') ifiand only if

• either (A,B) = (A', 77'),
• or B = -A and B' = -A' with 0 < A < 1 and 0 < A' < 1.

Set

xn=F^B)(A),        yn = F{A!B)(B)

and

sn = dxn/dA,        tn = dxn/dB,        u„ = dyn/dA,        vn=dy„/dB.

We shall say that the map F(A B) (or the pair (A, 77)) is A-isolated if x„ < 0

for all 77 > 0. Similarly the map F^,/?) (or the pair (A, 77)) is B-isolated if
y„ > 0 for all n > 0.

Lemma 1. Vt? > 0 : s„ > 0, tn > 0, un > 0, v„ > 0.
Furthermore,

• V(A, B) not A-isolated, 3M(AyB) finite such that t„ > 0 for n > M{A:B)
and lim,,_00 tn = 00,

• V(A, B) not B-isolated, 3N(AtB) finite such that u„ > 0 fior n > N(A,B)

and lim^oo un = 00,

• VA and Vfi, lim,,..^ sn - lim^oo v„ = 00.
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Proof of Lemma 1. We shall only examine the cases of s„ and t„—the other

two cases being similar. A direct computation yields

f 2 • sn + 1     for - 1 < x„ < 0,
Sn+\ = <  - ens       ^ i Wlth 5° = l

( 2 - sn for 0 < x„ < 1,

and
/ 2-7„ for -l<x„<0,

r«+i = i i   .   ,  i     f    n/       ^i with/0 = 0.
( 2 • 7„ + 1     for 0 < xn < 1,

Lemma 1 then follows from these formulas and from the definitions of A

and P-isolated.   □

Proposition 1. For any pair (A, B),

(A', B') >(A,B)=> K(A', B') > K(A , B).

Furthermore, if (A, B) is A or B-isolated then

(A', B') = (A,B)& K(A', B') = K(A, B).

Proof of Proposition 1. If (A, B) is neither A nor P-isolated, Proposition 1

follows immediately from Lemma 1. If, for instance, (A,B) is /1-isolated,

then K~ depends on A but not on B, and there are two cases to consider,

i.e., (A, B) is either P-isolated or not. However, in both cases, K+ depends

on B, which is enough to prove the equivalence stated in the proposition.   D

Following the method used in [2], we shall next investigate how K~ and K+

depend on C = A + B and D = A- B . To this end, we set

Sn = dxn/dC,        Tn = dxn/dD,        Un = dy„/dC,        Vn = dyn/dD.

We shall say that the map F(AyB) (or the pair (A, B)) is A-prefixed if B < 0
and F(AB)(A) is the unique fixed point of F(^,b) greater than zero. Similarly

the map F(AtB) (or the pair (A, B)) is B-prefixed if A > 0 and F^AB)(B) is
the unique fixed point F(A ?jB) smaller than zero.

Lemma 2.  V/7 > 0 : Sn > 2,  Tn > 1 ,  U„ > 2,  Vn < -1 .
Furthermore,

• for (A, B) not A-prefixed,  3M!A B, finite such that T„ > 2 for n >

M'(A,B)   atld  lim«^oo F„ = OO,

• for (A, B) not B-prefixed, 3N{AB) finite such that V„ < -2 for n >

N(A,B)   and  linl«-oo \V\„ = OO,

• \M and VP, lim„_00 S„ = lim^oo U„ = oo.

Proof of Lemma 2. Similar to the proof of Lemma 1, this proof follows from

the definitions and a direct computation, which gives us the following recursion

relations:

Sn+X =2-S„ + l    for - 1 < x„ < I,     with S0 = 1;

J2.F„ + 1     for-l<x„<0,
F„+i = < with Fn = 1;
"+1      I 2 • F„ - 1     for 0 < x„ < 1,

Un+X =2'U„ + 1    for - 1 <x„ < 1,     with U0 = 1;

(2-Vn + l     for-l<x„<0,
Fn+1 = ^ with F0 = -1 .    □

+       I 2 - K„ - 1     for0<x„<l,

The maps which are either A-prehxed or P-prefixed, but not both, offer no

particular difficulty, so Lemma 2 implies the following
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Proposition 2. Assume F(AtB)  is not both A-prefixed and B-prefixed.   Then,

writing C = A + B, D = A-B and C = A' + B', D' = A' - B', we have

(C, D') >(C,D)=> K~(A', B') >K~(A, B)

and

(C, -D') > (C, -77) => K+(A', B') >K+(A,B).

Two pairs (A, B) ^ (A', B'), such that one at least is not both ^(-prefixed

and P-prefixed, can always be compared using Propositions 1 and 2, with the

conclusion that K(A, P) f= K(A', B'). If both pairs are both ^-prefixed and
P-prefixed, and A • (1 + A) • A' • (1 + A') ^ 0 the two maps represent the same

dynamics, as already mentioned. At last the A- and P-prefixed cases A = -1

and A = 0 are different from each other and from anything else.
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