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THE EULER CHARACTERISTIC
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WITH AMENABLE FUNDAMENTAL GROUPS
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(Communicated by James E. West)

Abstract. The Euler characteristic of a closed projectively flat manifold with

amenable fundamental group is shown to be nonnegative, and in fact zero if we

further assume that the developing map is injective and the fundamental group

is infinite.

In this paper, we will show that the Euler characteristic of a closed projec-

tively flat manifold M is nonnegative if the fundamental group nxM of M

is amenable. If furthermore a developing map of M is injective, then it is

also shown that the Euler characteristic vanishes when nxM is infinite and

amenable. A projectively flat manifold is a smooth manifold which has a cover

of coordinate charts {Ua, cpa} , where cpa;Ua-+ RP" (or S" ) is a coordinate

chart for each a such that the coordinate transition cp$ o cp~x is a restriction

of a projective transformation on RP" (or S"). This is a special case of a

(G, A>manifold when X = R7>" and (7 = PGL(t7 + 1, R). (See, for instance,
[NY, Th] for a general notion of (G, X)-manifold.)

Note that the classical space-forms of constant sectional curvature are spe-

cial cases of projectively flat manifolds and its Euler characteristic in general

can assume any sign by a generalized Gauss-Bonnet theorem. For example, a

closed Euclidean space-form has vanishing Euler characteristic since its curva-
ture is zero, and its fundamental group is virtually abelian by Bieberbach and

hence amenable. (See [Gr] for basic facts about amenable groups.) More gen-
erally, it has long been conjectured [Mi, Go] that the Euler characteristic of a

closed affinely flat manifold M vanishes. (Affinely flat manifolds are (G, X)-

manifolds with X = E" = Euclidean 77-space and G = AS(n, R) and, hence,

form a subclass of projectively flat manifolds.) This conjecture has been an-

swered affirmatively when nxM is amenable [HT] and generalized to projec-

tively flat manifolds whose developing image lies in an affine space assuming

again nxM is amenable [KL]. Note that the developing image of a hyperbolic

manifold lies inside the unit ball in an affine space using a projective model,
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but its fundamental group is not amenable. A closed spherical space-form is

uniformized by the standard unit sphere, and hence its Euler characteristic is

positive if the dimension is even. In fact, the only even-dimensional closed

spherical spaces are spheres and real projective spaces. The proofs of the afore-

mentioned results generalize these classical facts.
The techniques we employ in the proof are basically the same as those used

in [KL] but are in the spherical setting. We use a generalized Gauss-Bonnet

formula in terms of angles of simplices in a triangulation. Since we are in a
non-Riemannian situation and the notion of angle is not well defined, we take

advantage of amenability of a holonomy group to replace an angle by an average

of the corresponding angles that appeared in the developing image.
Let s" be a spherical simplex lying in the standard unit sphere S" c R"+1

so that each of its (n - 1)-dimensional faces is a part of great hyperplanes P,,
i = 1, 2, ... , 77 + 1, in general position. P, is the intersection of S" with an

72-dimensional subspace of R"+1. Let /, be the characteristic function of the

positive side of P, which, by definition, is the half of S" bisected by P, that

contains s" .
If sr < s" is an r-dimensional face of s" given by sr = Pix n • • • n P,„_r n s" ,

then the angle at sr in s" , denoted by a(sr, s"), is defined as

(1) a(sr,s")= f fh-~fi._,dyol,
7s»

where dvol is the standard measure on S" normalized so that Js„ dvol = 1 .

Clearly, vol(s") = fs„ fi- ■■ fn+i dvol and the volume of s" , the antipodal image

of s" , is given by vol(5") = /s„(l - /i)---(l - fn+x)dvol. Now as in [Ho,

P. 29],

vol(s") = wol(s") = f (1 - fi) • • • (1 - fn+i) dvol
7s"

r=0 sr<sn Js"

and hence we get a spherical Gauss-Bonnet formula

(2) E E (-1)r"(5r, s") = (1 + (-l)")vol(s").
r=0 sr<sn

Note that when 77 = 2, (2) gives the classical Gauss-Bonnet formula (rather

a Harriot's formula) for a spherical triangle.

Let k(s") denote the left-hand side of (2) so that k(s") = 2vol(s") for n

even.
Let M" be a closed projectively flat manifold with a geometric triangulation

K consisting of triangles whose developing images are spherical simplices. (We

will use S" as a model space instead of RP" .) Such a geometric triangulation

can always be found as follows : Start with any smooth triangulation on M
and assume each simplex lies in a geometric coordinate chart via subdivision

if necessary. Then "straighten" the faces in S" ; this straightening process does

not depend on the choice of geometric coordinate charts since the coordinate

transition maps are projective. Now for a maximal-dimensional geometric sim-

plex a" in K and its face ar < a", we associate a real number a(ar, a") for
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each pair (ar < a"). Let

r=0 a'<a"

S(ar)= £ <*(<**, °n),

ar<a"

and

^) = E7tjE(1-5^))'
r=0 v€o'

where v is a vertex of K. Note that d(v) — 0 for a vertex in a local trian-

gulation around v on S" if a(ar, a") is really an angle given by (1). Now it

is not difficult to verify the following polyhedral Gauss-Bonnet formula for the

Euler characteristic x(M) in terms of angles:

(3) E^)+ E^*7")^^)-

The proof is just the rearrangement of terms a(ar, a") which cancel out each

other in the left-hand side of (3), leaving only E"=oIii7'€Jf(_')r which, of
course, equals ^(Af). (See [KL] for a proof.)

We use (3) in a crucial way to prove the following theorems.

Theorem A. Let M be a closed projectively flat manifold with amenable holon-

omy group. Then the Euler characteristic of M is nonnegative. In particular,

this holds if the fundamental group is amenable.

Proof. Choose any geometric triangulation K on M, and let (4>, D) :

(itxM, M) —> (PGL(77 + 1, R), S") be an (equivariant) developing pair, where

D : M -* S" is a developing map of a universal covering M of M into the

model space X = S" and dj\ nxM -+ <j>(nxM) = 77 c PGL(t?+ 1, R) is a holon-
omy representation. (See [NY] or [Th], for example, for the notion of a develop-
ing pair.) For each pair ar < a" , choose and fix, once and for all, any develop-

ing image Sq < sfi of a lifting of ar < a" in M. Any other image (sr, s") can

be written as 77(55, 5o) f°r some h £ 77. Let ot(art0n) : 77 -> R be a nonnega-

tive angle function defined as ot(ar anfh) = a(sr, s"), where (sr, s") = h(s^, sfi)

and a(sr, s") is the angle given in (1). Let 777 be a right invariant mean of the

amenable group 77 and let a(or, a") = 7n(a((7r ffn)). Given s" , and for each

sr < s" , there is h^.s") £ H such that (sr, s") = /V.^iK > 5o) > aim" hence for

77 = even, (2) gives

0 <2vol(s") = tc(s")

=E E (-ir^r, s") ̂B-iMv.i-iW.^))
r=0 sr<s"

= ̂ ^(-l)V,»')(V,s")) = EE^-1^'^") ' a("',a")(e) ,

where e is the identity element in 77 and the canonical action of 77 on the

bounded functions / of 77 is given by 77 • f(x) = f(x • h), h , x £ H. If we
denote ks- = 2^"=0 £*<■<*<• (-J)'V.*")'"(»'.<»") so that M*0 = k(s"), then one
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readily checks that ks„(h) = k(h(s")) = 2vol(h(s")), h G 77, and hence obtains
a positive bounded function ksn : 77 —> R. Therefore

0 <  m(ksn)  = YzZ^1)'™^,*") • a(o',0«))

^EB-1)'*^^)) = ED-'W17'' o = k(°n)-

Now apply the same argument to show that d(v) - 0 for each vertex v g K.

Given a developing image v of a lifting of v , the (developed) angles around

77 are again holonomy images of the reference angles (Sq, sf). We obtain a

bounded function dv : H —► R in the same way as we obtain fc^ , so that

dv(e) = d(v) = YjTJzZ(l-S(sr^'
r=0 v€sr

where
S(sr) = Y a(s'' s")   and   dv(h) = d(h(v)).

sr<s"

But this time, <S(5r) = 1 holds trivially and hence dv is a zero function and

0 = m(dv) = d(u). Now the polyhedral Gauss-Bonnet formula (3) gives the

desired nonnegativity of the Euler characteristic.   Q.E.D.

Note that \k(a") can be thought of as an average volume of the developing

images of a" , and thus \k(M) = \ Ylo'ex k(a") IS a volume of M with respect
to an invariant mean 777, which of course does not depend on the choice of m

since it is equal to \%(M). We can obtain more detailed information on the

Euler characteristic in certain cases when we know more about developing maps.

For example, if the developing image D(F) of a fundamental domain F in

the induced triangulation of M is the whole RP" (or misses a set of measure
zero), then

X(M) = k(M) = Y H°n) = m(kD(F)),
<r»eJC

where k^p) = J2S"eD(F)ks" > and hence #(Af) > 1 since for each h £ 77,

kD(F)(h) = k(h(D(F))) > 2vol(RP") = 1 . (Recall that we are using a normal-

ized volume so that vol(S") = 1 .)

On the other hand, if the developing map D : M —> S" is injective so that

the holonomy representation is injective, then we have more precise information

about the Euler characteristic as follows.

Theorem B. Let M" be an even-dimensional closed projectively flat manifold

with amenable fundamental group.

(a) If kxM is finite, then M is isomorphic to either S" or RP".

(b) If nxM is infinite and the developing map is injective, then #(M) = 0.

Proof. If 771M is finite, the universal covering M is compact, and hence the de-

veloping map D : M —► S" , being a local isomorphism, becomes a covering and

thus an isomorphism. Now M is isomorphic to S"/H, where the holonomy

group 77 = nxM is finite, and hence is trivial or Z/2 by considering /(M).

If a projective transformation a is a free involution on the even-dimensional
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sphere, it is easy to show that a is the antipodal map by looking at the eigenval-

ues of a linear transformation inducing a . This proves (a). If nxM is infinite

and D : M -+ S" is injective, we have infinite disjoint developing images of

a simplex a" £ K. For any finite subset A c 77 = 771 M, consider a function

lf,n€A h - ksn : 77 —> R, where s" is a fixed developing image of a" . (We retain

the same notation as in the proof of Theorem A.) Now note that for g £ H,

Yh-ks,(g)^Yk^(Sh) = zZk(sh(s"))
h£A h£A h£A

= Y2vol(sh(sn)) < 2vol(S") = 2.
heA

Hence 2 > mifffh^Ah • ksn) = Y,heAm(h ' M = J2heAm(ks") = MMM
and m(ksn) < 2/\A\. Since the cardinality \A\ of A may be arbitrarily large,

k(a") = m(ks») = 0, and hence *(M) = tc(M) = VJff„eJf Tc(er") = 0.   Q.E.D.
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